×

A reduced unified continuum formulation for vascular fluid-structure interaction. (English) Zbl 1507.76262

Summary: We recently derived the unified continuum and variational multiscale formulation for fluid-structure interaction (FSI) using the Gibbs free energy as the thermodynamic potential. Restricting our attention to vascular FSI, we now reduce this formulation in arbitrary Lagrangian-Eulerian (ALE) coordinates by adopting three common modeling assumptions for the vascular wall. The resulting semi-discrete formulation, referred to as the reduced unified continuum formulation, achieves monolithic coupling of the FSI system in the Eulerian frame through a simple modification of the fluid boundary integral. While ostensibly similar to the semi-discrete formulation of the coupled momentum method introduced by Figueroa et al., its underlying derivation does not rely on an assumption of a fictitious body force in the elastodynamics sub-problem and therefore represents a direct simplification of the ALE method. Furthermore, uniform temporal discretization of the entire FSI system is performed via the generalized-\(\alpha\) scheme. In contrast to the predominant approach yielding only first-order accuracy for pressure, we collocate both pressure and velocity at the intermediate time step to achieve uniform second-order temporal accuracy. In conjunction with quadratic tetrahedral elements, our methodology offers higher-order temporal and spatial accuracy for quantities of clinical interest, including pressure and wall shear stress. Furthermore, without loss of consistency, a segregated predictor multi-corrector algorithm is developed to preserve the same block structure as for the incompressible Navier-Stokes equations in the implicit solver’s associated linear system. Block preconditioning of a monolithically coupled FSI system is therefore made possible for the first time. Compared to alternative preconditioners, our three-level nested block preconditioner, which achieves improved representation of the Schur complement, demonstrates robust performance over a wide range of physical parameters. We present verification of our methodology against Womersley’s deformable wall theory and additionally develop practical modeling techniques for clinical applications, including tissue prestressing. We conclude with an assessment of our combined FSI technology in two patient-specific cases.

MSC:

76Z05 Physiological flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227-253 (1974) · Zbl 0292.76018
[2] Hughes, T.; Liu, W.; Zimmermann, T., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29, 329-349 (1981) · Zbl 0482.76039
[3] Donea, J.; Giuliani, S.; Halleux, J., An arbitrary Lagrangian-Eulerian finite-element method for transient dynamic fluid structure interactions, Comput. Methods Appl. Mech. Engrg., 33, 689-723 (1982) · Zbl 0508.73063
[4] Peskin, C., Flow patterns around heart valves: A numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[5] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[6] Baaijens, F., A fictitious domain/mortar element method for fluid-structure interaction, Internat. J. Numer. Methods Fluids, 35, 743-761 (2001) · Zbl 0979.76044
[7] Borazjani, I., Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 257, 103-116 (2013) · Zbl 1286.74030
[8] Griffith, B.; Luo, X.; McQueen, D.; Peskin, C., Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, Int. J. Appl. Mech., 1, 137-177 (2009)
[9] Kamensky, D.; Hsu, M.; Schillinger, D.; Evans, J.; Aggarwal, A.; Bazilevs, Y.; Sacks, M.; Hughes, T., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[10] de Hart, J.; Peters, G.; Schreurs, P.; Baaijens, F., A three-dimensional computational analysis of fluid-structure interaction in the aortic valve, J. Biomech., 36, 103-112 (2003)
[11] van Loon, R.; Anderson, P.; van de Vosse, F., A fluid-structure interaction method with solid-rigid contact for heart valve dynamics, J. Comput. Phys., 217, 806-823 (2006) · Zbl 1099.74044
[12] Wu, Y.; Cai, X., A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation, J. Comput. Phys., 258, 524-537 (2014) · Zbl 1349.76552
[13] Hsu, M.; Kamensky, D.; Bazilevs, Y.; Sacks, M.; Hughes, T., Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 54, 1055-1071 (2014) · Zbl 1311.74039
[14] Liu, J.; Marsden, A., A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 337, 549-597 (2018) · Zbl 1440.74013
[15] Liu, J.; Yang, W.; Lan, I.; Marsden, A., Fluid-structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation, Mech. Res. Commun., 107, Article 103556 pp. (2020)
[16] Fernández, M., Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit, SeMA J., 55, 59-108 (2011) · Zbl 1242.76201
[17] Nobile, F.; Pozzoli, M.; Vergara, C., Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics, Comput. & Fluids, 86, 470-482 (2013) · Zbl 1290.76166
[18] Piperno, S.; Farhat, C., Design of efficient partitioned procedures for the transient solution of aeroelastic problems, Eur. J. Comput. Mech., 9, 655-680 (2000) · Zbl 1003.74081
[19] Badia, S.; Quaini, A.; Quarteroni, A., Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg., 197, 4216-4232 (2008) · Zbl 1194.74058
[20] Causin, P.; Gerbeau, J.; Nobil, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., 194, 4506-4527 (2005) · Zbl 1101.74027
[21] Guidoboni, G.; Glowinski, R.; Cavallini, N.; Canic, S., Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228, 6916-6937 (2009) · Zbl 1261.76056
[22] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on robin transmission conditions, J. Comput. Phys., 227, 7027-7051 (2008) · Zbl 1140.74010
[23] Kadapa, C., Insights into the performance of loosely-coupled FSI schemes based on robin boundary conditions (2021), arXiv:2105.14831 [Cs.CE]
[24] Pedley, T., The Fluid Mechanics of Large Blood Vessels (1980), Cambridge University Press · Zbl 0449.76100
[25] Pries, A.; Neuhaus, D.; Gaehtgens, P., Blood viscosity in tube flow: dependence on diameter and hematocrit, Amer. J. Physiol.: Heart Circ. Physiol., 263, 6, H1770-H1778 (1992)
[26] Figueroa, C.; Vignon-Clementel, I.; Jansen, K.; Hughes, T.; Taylor, C., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. Methods Appl. Mech. Engrg., 195, 5685-5706 (2006) · Zbl 1126.76029
[27] Nama, N.; Aguirre, M.; Humphrey, J.; Figueroa, C., A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics, Sci. Rep., 10, 17528 (2020)
[28] Womersley, J., Oscillatory motion of a viscous liquid in a thin-walled elastic tube—I: The linear approximation for long waves, Lond. Edinb. Dublin Philos. Mag. J. Sci., 46, 199-221 (1955) · Zbl 0064.43903
[29] Zamir, M., The Physics of Pulsatile Flow (2000), Springer, New York · Zbl 0978.76005
[30] Updegrove, A.; Wilson, N.; Merkow, J.; Lan, H.; Marsden, A.; Shadden, S., SimVascular: AN open source pipeline for cardiovascular simulation, Ann. Biomed. Eng., 45, 525-541 (2017)
[31] Lan, H.; Updegrove, A.; Wilson, N. M.; Maher, G. D.; Shadden, S. C.; Marsden, A. L., A re-engineered software interface and workflow for the open-source SimVascular cardiovascular modeling package, J. Biomech. Eng., 140, 2, 0245011-02450111 (2018)
[32] Arthurs, C.; Khlebnikov, R.; Melville, A.; Gomez, A.; Dillon-Murphy, D.; Cuomo, F.; Vieira, M.; Schollenberger, J.; Lynch, S.; Tossas-Betancourt, C., CRIMSON: An open-source software framework for cardiovascular integrated modelling and simulation, PLoS Comput. Biol., 17, 5, Article e1008881 pp. (2021)
[33] Williams, A.; Koo, B.; Gundert, T.; Fitzgerald, P.; Jr., J. L., Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation, J. Appl. Physiol., 109, 532-540 (2010)
[34] Gundert, T.; Shadden, S.; Williams, A.; Koo, B.; Feinstein, J.; Ladisa, J., A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models, Ann. Biomed. Eng., 39, 1423-1437 (2011)
[35] Taylor, C.; Fonte, T.; Min, J., Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: Scientific basis, J. Am. Coll. Cardiol., 61, 2233-2241 (2013)
[36] Coogan, J.; Chan, F.; Taylor, C.; Feinstein, J., Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload, Catheter. Cardiovasc. Interv., 77, 680-691 (2010)
[37] Yang, W.; Feinstein, J.; Marsden, A., Constrained optimization of an idealized Y-shaped baffle for the fontan surgery at rest and exercise, Comput. Methods Appl. Mech. Engrg., 199, 2135-2149 (2010) · Zbl 1231.74357
[38] Yang, W.; Feinstein, J.; Vignon-Clementel, I., Adaptive outflow boundary conditions improve post-operative predictions after repair of peripheral pulmonary artery stenosis, Biomech. Model. Mechanobiol., 15, 1345-1353 (2016)
[39] Yang, W.; Hanley, F.; Chan, F.; Marsden, A.; Vignon-Clementel, I.; Feinstein, J., Computational simulation of postoperative pulmonary flow distribution in alagille patients with peripheral pulmonary artery stenosis, Congenit. Heart Dis., 13, 241-250 (2017)
[40] Kung, E.; Les, A.; Figueroa, C.; Medina, F.; Arcaute, K.; Wicker, R.; McConnell, M.; Taylor, C., In vitro validation of finite element analysis of blood flow in deformable models, Ann. Biomed. Eng., 39, 1947-1960 (2011)
[41] Kung, E.; Les, A.; Medina, F.; Wicker, R.; McConnell, M.; Taylor, C., In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions, J. Biomech. Eng. (2011)
[42] Figueroa, C., A Coupled-Momentum Method to Model Blow Flow and Vessel Deformation in Human Arteries: Applications in Disease Research and Simulation-Based Medical Planning (2006), Stanford University, (Ph.D. thesis)
[43] Filonova, V.; Arthurs, C.; Vignon-Clementel, I.; Figueroa, C., Verification of the coupled-momentum method with Womersley’s deformable wall analytical solution, Int. J. Numer. Methods Biomed. Eng., 36, Article e3266 pp. (2019)
[44] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173-201 (2007) · Zbl 1169.76352
[45] Chung, J.; Hulbert, G., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\( \alpha\) method, J. Appl. Mech., 60, 371-375 (1993) · Zbl 0775.73337
[46] Jansen, K.; Whiting, C.; Hulbert, G., A generalized-\( \alpha\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 305-319 (2000) · Zbl 0973.76048
[47] Bazilevs, Y.; Calo, V.; Hughes, T.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[48] Bazilevs, Y.; Takizawa, K.; Tezduyar, T., Computational Fluid-STructure Interaction: Methods and Applications (2012), John Wiley & Sons, Ltd
[49] Joshi, V.; Jaiman, R., A hybrid variational Allen-Cahn/ALE scheme for the coupled analysis of two-phase fluid-structure interaction, Internat. J. Numer. Methods Engrg., 117, 405-429 (2018)
[50] Kang, S.; Choi, H.; Yoo, J., Investigation of fluid-structure interactions using a velocity-linked P2/P1 finite element method and the generalized-\( \alpha\) method, Internat. J. Numer. Methods Engrg., 90, 1529-1548 (2012) · Zbl 1246.74059
[51] Liu, J.; Lan, I.; Tikenogullari, O.; Marsden, A., A note on the accuracy of the generalized-\( \alpha\) scheme for the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 122, 638-651 (2021)
[52] Newmark, N., A method of computation for structural dynamics, Proc. Amer. Soc. Civ. Eng.: J. Eng. Mech. Divis., 67-94 (1959)
[53] Liu, J.; Yang, W.; Dong, M.; Marsden, A., The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations, Comput. Methods Appl. Mech. Engrg., 367, Article 113122 pp. (2020) · Zbl 1442.76045
[54] Hughes, T., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall · Zbl 0634.73056
[55] Liu, J.; Marsden, A.; Tao, Z., An energy-stable mixed formulation for isogeometric analysis of incompressible hyperelastodynamics, Internat. J. Numer. Methods Engrg., 120, 937-963 (2019)
[56] Colciago, C.; Deparis, S.; Quarteroni, A., Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics, J. Comput. Appl. Math., 265, 120-138 (2014) · Zbl 1293.92008
[57] Hulbert, G., (Stein, E.; de Borst, R.; Hughes, T., Encyclopedia of Computational Mechanics (2017), John Wiley & Sons, Ltd)
[58] Alastruey, J.; Parker, K.; Sherwin, S., 11th International Conference on Pressure Surges, 401-443 (2012), Virtual PiE Led t/a BHR Group, Ch. Arterial pulse wave haemodynamics
[59] Bazilevs, Y.; Hsu, M.; Benson, D.; Sankaran, S.; Marsden, A., Computational fluid-structure interaction: methods and application to a total cavopulmonary connection, Comput. Mech., 45, 77-89 (2009) · Zbl 1398.92056
[60] Bischoff, M.; Bletzinger, K.-U.; Wall, W.; Ramm, E., (Stein, E.; Borst, R.; Hughes, T., Encyclopedia of Computational Mechanics (2004), John Wiley & Sons, Ltd), 59-137 · Zbl 1190.76001
[61] Bergan, P.; Felippa, C., A triangular membrane element with rotational degrees of freedom, Comput. Methods Appl. Mech. Engrg., 50, 25-69 (1985) · Zbl 0593.73073
[62] Jun, H.; Yoon, K.; Lee, P.; Bathe, K., The MITC3+ shell element enriched in membrane displacements by interpolation covers, Comput. Methods Appl. Mech. Engrg., 337, 458-480 (2018) · Zbl 1440.74405
[63] Liu, J.; Latorre, M.; Marsden, A., A continuum and computational framework for viscoelastodynamics: I. Finite deformation linear models, Comput. Methods Appl. Mech. Engrg., 385, Article 114059 pp. (2021) · Zbl 1502.74020
[64] Formaggia, L.; Lamponi, D.; Quarteroni, A., One-dimensional models for blood flow in arteries, J. Eng. Math., 47, 251-276 (2003) · Zbl 1070.76059
[65] Bertaglia, G.; Caleffi, V.; Valiani, A., Modeling blood flow in viscoelastic vessels: the 1D augmented fluid-structure interaction system, Comput. Methods Appl. Mech. Engrg., 360, Article 112772 pp. (2020) · Zbl 1441.76146
[66] Moireau, P.; Xiao, N.; Astorino, M.; Figueroa, C.; Chapelle, D.; Taylor, C.; Gerbeau, J., External tissue support and fluid-structure simulation in blood flows, Biomech. Model. Mechanobiol., 11, 1-18 (2012)
[67] Lan, I.; Liu, J.; Yang, W.; Zimmermann, J.; Ennis, D.; Marsden, A., Validation of the reduced unified continuum formulation against in vitro 4D-flow MRI (2022), arXiv:2203.00721 [Physics.Comp-Ph]
[68] Debes, J.; Fung, Y., Biaxial mechanics of excised canine pulmonary arteries, Am. J. Physiol., 269, H433-H442 (1995)
[69] Zhou, J.; Fung, Y., The degree of nonlinearity and anisotropy of blood vessel elasticity, Proc. Natl. Acad. Sci. USA, 94, 14255-14260 (1997)
[70] Franca, L.; Frey, S., Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 99, 209-233 (1992) · Zbl 0765.76048
[71] Bazilevs, Y.; Gohean, J.; Hughes, T.; Moser, R.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg., 198, 3534-3550 (2009) · Zbl 1229.74096
[72] Moghadam, M.; Bazilevs, Y.; Hsia, T.; Vignon-Clementel, I.; Marsden, A.; Modeling of Congenital Hearts Alliance (MOCHA), A., A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput. Mech., 48, 277-291 (2011) · Zbl 1398.76102
[73] Taylor, C.; Hughes, T.; Zarins, C., Finite element modeling of blood flow in arteries, Comput. Methods Appl. Mech. Engrg., 158, 155-196 (1998) · Zbl 0953.76058
[74] Gresho, P.; Sani, R., Incompressible Flow and the Finite Element Method. Volume 1: Advection-Diffusion and Isothermal Laminar Flow (1998), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, NY (United States) · Zbl 0941.76002
[75] Bazilevs, Y.; Michler, C.; Calo, V.; Hughes, T., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. Methods Appl. Mech. Engrg., 196, 4853-4862 (2007) · Zbl 1173.76397
[76] Colomés, O.; Badia, S.; Codina, R.; Principe, J., Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows, Comput. Methods Appl. Mech. Engrg., 285, 32-63 (2015) · Zbl 1423.76152
[77] Brooks, A.; Hughes, T., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[78] Hughes, T.; Mazzei, L.; Jansen, K., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 47-59 (2000) · Zbl 0998.76040
[79] Pauli, L.; Behr, M., On stabilized space-time FEM for anisotropic meshes: Incompressible Navier-Stokes equations and applications to blood flow in medical devices, Internat. J. Numer. Methods Fluids, 85, 189-209 (2017)
[80] von Danwitz, M.; Karyofylli, V.; Hosters, N.; Behr, M., Simplex space-time meshes in compressible flow simulations, Internat. J. Numer. Methods Fluids, 91, 29-48 (2019)
[81] Hughes, T.; Scovazzi, G.; Franca, L., (Stein, E.; de Borst, R.; Hughes, T., Encyclopedia of Computational Mechanics (2017), John Wiley & Sons, Ltd)
[82] Codina, R.; Principe, J.; Baiges, J., Subscales on the element boundaries in the variational two-scale finite element method, Comput. Methods Appl. Mech. Engrg., 198, 5-8, 838-852 (2009) · Zbl 1229.76046
[83] Yan, J.; Korobenko, A.; Tejada-Martinez, A.; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Comput. & Fluids, 158, 150-156 (2017) · Zbl 1390.76107
[84] Silvester, D.; Kechkar, N., Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg., 79, 1, 71-86 (1990) · Zbl 0706.76075
[85] Figueroa, C.; Taylor, C.; Marsden, A., (Stein, E.; de Borst, R.; Hughes, T., Encyclopedia of Computational Mechanics (2017), John Wiley & Sons, Ltd), (Ch. Blood Flow)
[86] Taylor, C.; Figueroa, C., Patient-specific modeling of cardiovascular mechanics, Annu. Rev. Biomed. Eng., 11 (2009)
[87] Rannacher, R., Methods for numerical flow simulation, (Hemodynamical Flows: Modeling, Analysis and Simulation (2008), Birkhäuser Basel), 275-332 · Zbl 1144.76034
[88] Hsu, M.; Bazilevs, Y.; Calo, V.; Tezduyar, T.; Hughes, T., Improving stability of stabilizedand multiscale formulations in flow simulations at small time steps, Comput. Methods Appl. Mech. Engrg., 19, 828-840 (2010) · Zbl 1406.76028
[89] Simo, J.; Tarnow, N.; Wong, K., Exact energy-momentum conserving algorithms and symmetric schemes for nonlinear dynamics, Comput. Methods Appl. Mech. Engrg., 100, 63-116 (1992) · Zbl 0764.73096
[90] Hilber, H.; Hughes, T., Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics, Earthq. Eng. Struct. Dyn., 6, 99-117 (1978)
[91] Kadapa, C.; Dettmer, W.; Perić, D., On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems, Comput. Struct., 193, 226-238 (2017)
[92] Moghadam, M.; Vignon-Clementel, I.; Figliola, R.; Marsden, A.; Modeling Of Congenital Hearts Alliance (MOCHA) Investigators, T., A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations, J. Comput. Phys., 244, 63-79 (2013) · Zbl 1377.76041
[93] Scovazzi, G.; Carnes, B.; Zeng, X.; Rossi, S., A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach, Internat. J. Numer. Methods Engrg., 106, 799-839 (2016) · Zbl 1352.74434
[94] Liu, J.; Marsden, A., A robust and efficient iterative method for hyper-elastodynamics with nested block preconditioning, J. Comput. Phys., 383, 72-93 (2019) · Zbl 1451.74208
[95] Matthies, H.; Strang, G., The solution of nonlinear finite element equations, Internat. J. Numer. Methods Engrg., 14, 11, 1613-1626 (1979) · Zbl 0419.65070
[96] Johan, Z.; Hughes, T., A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids, Comput. Methods Appl. Mech. Engrg., 87, 281-304 (1991) · Zbl 0760.76070
[97] Benzi, M.; Golub, G.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[98] May, D.; Moresi, L., Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, Phys. Earth Planet. Inter., 171, 33-47 (2008)
[99] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 461-469 (1993) · Zbl 0780.65022
[100] Ieary, A.; Falgout, R.; Henson, V.; Jones, J.; Manteuffel, T.; McCormick, S.; Miranda, G.; Ruge, J., Robustness and scalability of algebraic multigrid, SIAM J. Sci. Comput., 21, 5, 1886-1908 (2000) · Zbl 0959.65049
[101] Falgout, R.; Yang, U., Hypre: A library of high performance preconditioners, (International Conference on Computational Science (2002), Springer), 632-641 · Zbl 1056.65046
[102] svSolver GitHub repository, github.com/SimVascular/svSolver/blob/master/Code/FlowSolvers/ThreeDSolver/svSolver.
[103] Humphrey, J., Cardiovascular Solid Mechanics: Cells, Tissues, and Organs (2002), Springer Science + Business Media
[104] Wong, J.; Kuhl, E., Generating fibre orientation maps in human heart models using Poisson interpolation, Comput. Methods Biomech. Biomed. Eng., 17, 11, 1217-1226 (2014)
[105] Xiao, N.; Humphrey, J.; Figueroa, C., Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network, J. Comput. Phys., 244, 22-40 (2013) · Zbl 1377.76047
[106] The Vascular Modeling ToolKit, www.vmtk.org.
[107] Antiga, L., Patient-Specific Modeling of Geometry and Blood Flow in Large Arteries (2002), Polytechnic University of Milan, (Ph.D. thesis)
[108] Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D., An image-based modeling framework for patient-specific computational hemodynamics, Med. Biol. Eng. Comput., 46, 1097 (2008)
[109] Tezduyar, T.; Sathe, S.; Schwaab, M.; Conklin, B., Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique, Internat. J. Numer. Methods Fluids, 57, 5, 601-629 (2008) · Zbl 1230.76054
[110] Hsu, M.-C.; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation, Finite Elem. Anal. Des., 47, 6, 593-599 (2011)
[111] Bäumler, K.; Vedula, V.; Sailer, A.; Seo, J.; Chiu, P.; Mistelbauer, G.; Chan, F.; Fischbein, M.; Marsden, A.; Fleischmann, D., Fluid-structure interaction simulations of patient-specific aortic dissection, Biomech. Model. Mechanobiol., 19, 5, 1607-1628 (2020)
[112] Vignon-Clementel, I.; Figueroa, C.; Jansen, K.; Taylor, C., Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Comput. Methods Appl. Mech. Engrg., 195, 3776-3796 (2006) · Zbl 1175.76098
[113] Vignon-Clementel, I.; Figueroa, C.; Jansen, K.; Taylor, C., Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries, Comput. Methods Biomech. Biomed. Eng., 13, 625-640 (2010)
[114] Kung, E.; Corsini, C.; Marsden, A.; Vignon-Clementel, I.; Pennati, G.; Figliola, R.; Hsia, T.-Y.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators, M., Multiscale modeling of superior cavopulmonary circulation: Hemi-fontan and bidirectional glenn are equivalent, Semin. Thorac. Cardiovasc. Surg., 32, 4, 883-892 (2020)
[115] Tran, J.; Schiavazzi, D.; Ramachandra, A.; Kahn, A.; Marsden, A., Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations, Comput. & Fluids, 142, 128-138 (2017) · Zbl 1390.76945
[116] Yang, W.; Dong, M.; Rabinovitch, M.; Chan, F. P.; Marsden, A. L.; Feinstein, J. A., Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients, Biomech. Model. Mechanobiol., 18, 3, 779-796 (2019)
[117] Ramachandra, A.; Kahn, A.; Marsden, A., Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts, J. Cardiovasc. Transl. Res., 9, 279-290 (2016)
[118] Taiyi system (2021), https://www.top500.org/system/179572/ (Accessed: 2021-09-25)
[119] Lan, I.; Liu, J.; Yang, W.; Marsden, A., Numerical investigation of abdominal aortic aneurysm hemodynamics using the reduced unified continuum formulation for vascular fluid-structure interaction, Forces Mech., 7, Article 100089 pp. (2022)
[120] Kim, H.; Vignon-Clementel, I.; Coogan, J.; Figueroa, C.; Jansen, K.; Taylor, C., Patient-specific modeling of blood flow and pressure in human coronary arteries, Ann. Biomed. Eng., 38, 10, 3195-3209 (2010)
[121] Sankaran, S.; Moghadam, M.; Kahn, A.; Tseng, E.; Guccione, J.; Marsden, A., Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery, Ann. Biomed. Eng., 40, 10, 2228-2242 (2012)
[122] Gutierrez, N.; Mathew, M.; McCrindle, B.; Tran, J.; Kahn, A.; Burns, J.; Marsden, A., Hemodynamic variables in aneurysms are associated with thrombotic risk in children with kawasaki disease, Int. J. Cardiol., 281, 15-21 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.