Khammahawong, Konrawut; Chaipunya, Parin; Kumam, Poom Iterative algorithms for monotone variational inequality and fixed point problems on Hadamard manifolds. (English) Zbl 07569600 Adv. Oper. Theory 7, No. 4, Paper No. 43, 38 p. (2022). MSC: 47H05 47J25 58A05 58C30 PDF BibTeX XML Cite \textit{K. Khammahawong} et al., Adv. Oper. Theory 7, No. 4, Paper No. 43, 38 p. (2022; Zbl 07569600) Full Text: DOI OpenURL
Achour, Hanaâ; Bensid, Sabri Singular elliptic problem involving a fractional \(p\)-Laplacian with discontinuous nonlinearity. (English) Zbl 07565473 J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 41, 25 p. (2022). MSC: 35J25 35B38 PDF BibTeX XML Cite \textit{H. Achour} and \textit{S. Bensid}, J. Pseudo-Differ. Oper. Appl. 13, No. 3, Paper No. 41, 25 p. (2022; Zbl 07565473) Full Text: DOI OpenURL
Stonyakin, Fedor; Gasnikov, Alexander; Dvurechensky, Pavel; Titov, Alexander; Alkousa, Mohammad Generalized mirror prox algorithm for monotone variational inequalities: Universality and inexact oracle. (English) Zbl 07565450 J. Optim. Theory Appl. 194, No. 3, 988-1013 (2022). MSC: 65K15 90C33 90C06 68Q25 65Y20 68W40 58E35 PDF BibTeX XML Cite \textit{F. Stonyakin} et al., J. Optim. Theory Appl. 194, No. 3, 988--1013 (2022; Zbl 07565450) Full Text: DOI OpenURL
Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N. Optimal control and directional differentiability for elliptic quasi-variational inequalities. (English) Zbl 07563231 Set-Valued Var. Anal. 30, No. 3, 873-922 (2022). MSC: 47J20 49J21 49J40 49K21 46G05 PDF BibTeX XML Cite \textit{A. Alphonse} et al., Set-Valued Var. Anal. 30, No. 3, 873--922 (2022; Zbl 07563231) Full Text: DOI OpenURL
Thong, Duong Viet; Li, Xiaoxiao; Dong, Qiao-Li; Van, Nguyen Thi Cam; Thang, Hoang Van Revisiting the extragradient method for finding the minimum-norm solution of non-Lipschitzian pseudo-monotone variational inequalities. (English) Zbl 07562929 Comput. Appl. Math. 41, No. 4, Paper No. 186, 22 p. (2022). MSC: 65Y05 65K15 68W10 47H09 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Comput. Appl. Math. 41, No. 4, Paper No. 186, 22 p. (2022; Zbl 07562929) Full Text: DOI OpenURL
Ceng, Lu-Chuan; Yao, Jen-Chih; Shehu, Yekini On Mann implicit composite subgradient extragradient methods for general systems of variational inequalities with hierarchical variational inequality constraints. (English) Zbl 07562155 J. Inequal. Appl. 2022, Paper No. 78, 28 p. (2022). MSC: 47H09 47H10 47J20 47J25 PDF BibTeX XML Cite \textit{L.-C. Ceng} et al., J. Inequal. Appl. 2022, Paper No. 78, 28 p. (2022; Zbl 07562155) Full Text: DOI OpenURL
Linh, Nguyen Xuan; Thong, Duong Viet; Cholamjiak, Prasit; Tuan, Pham Anh; Long, Luong Van Strong convergence of an inertial extragradient method with an adaptive nondecreasing step size for solving variational inequalities. (English) Zbl 07560337 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 2, 795-812 (2022). MSC: 65Y05 65K15 68W10 47H05 47J25 PDF BibTeX XML Cite \textit{N. X. Linh} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 2, 795--812 (2022; Zbl 07560337) Full Text: DOI OpenURL
Duan, Yarui; Wu, Pengcheng; Zhou, Yuying An approximating approach to an optimal control problem for an elliptic variational inequality on a mixed Boundary. (English) Zbl 07559555 Numer. Funct. Anal. Optim. 43, No. 9, 1095-1113 (2022). MSC: 49J40 49K20 49J20 PDF BibTeX XML Cite \textit{Y. Duan} et al., Numer. Funct. Anal. Optim. 43, No. 9, 1095--1113 (2022; Zbl 07559555) Full Text: DOI OpenURL
Cuong, Tran Luu; Anh, Tran Viet; Van, Le Huynh My A self-adaptive step size algorithm for solving variational inequalities with the split feasibility problem with multiple output sets constraints. (English) Zbl 07559551 Numer. Funct. Anal. Optim. 43, No. 9, 1009-1026 (2022). MSC: 49J40 90C33 47H10 PDF BibTeX XML Cite \textit{T. L. Cuong} et al., Numer. Funct. Anal. Optim. 43, No. 9, 1009--1026 (2022; Zbl 07559551) Full Text: DOI OpenURL
Abass, H. A.; Godwin, G. C.; Narain, O. K.; Darvish, V. Inertial extragradient method for solving variational inequality and fixed point problems of a Bregman demigeneralized mapping in a reflexive Banach spaces. (English) Zbl 07559548 Numer. Funct. Anal. Optim. 43, No. 8, 933-960 (2022). MSC: 47H06 47H09 47J05 47J25 PDF BibTeX XML Cite \textit{H. A. Abass} et al., Numer. Funct. Anal. Optim. 43, No. 8, 933--960 (2022; Zbl 07559548) Full Text: DOI OpenURL
Kovtunenko, Victor A.; Kunisch, Karl Shape derivative for penalty-constrained nonsmooth-nonconvex optimization: cohesive crack problem. (English) Zbl 07558554 J. Optim. Theory Appl. 194, No. 2, 597-635 (2022). MSC: 35R37 49J40 49Q10 74Rxx PDF BibTeX XML Cite \textit{V. A. Kovtunenko} and \textit{K. Kunisch}, J. Optim. Theory Appl. 194, No. 2, 597--635 (2022; Zbl 07558554) Full Text: DOI OpenURL
Thong, Duong Viet; Li, Xiao-Huan; Dong, Qiao-Li; Cho, Yeol Je; Rassias, Themistocles M. A projection and contraction method with adaptive step sizes for solving bilevel pseudo-monotone variational inequality problems. (English) Zbl 07558497 Optimization 71, No. 7, 2073-2096 (2022). MSC: 47H09 47J20 47J05 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Optimization 71, No. 7, 2073--2096 (2022; Zbl 07558497) Full Text: DOI OpenURL
Liu, JianXun; Li, ShengJie; Jiang, Jie Quantitative stability of two-stage stochastic linear variational inequality problems with fixed recourse. (English) Zbl 07548886 Appl. Anal. 101, No. 8, 3122-3138 (2022). MSC: 90C15 90C33 PDF BibTeX XML Cite \textit{J. Liu} et al., Appl. Anal. 101, No. 8, 3122--3138 (2022; Zbl 07548886) Full Text: DOI OpenURL
Huy, Pham Van; Van, Le Huynh My; Hien, Nguyen Duc; Anh, Tran Viet Modified Tseng’s extragradient methods with self-adaptive step size for solving bilevel split variational inequality problems. (English) Zbl 07548182 Optimization 71, No. 6, 1721-1748 (2022). MSC: 49M37 90C26 65K15 49J40 PDF BibTeX XML Cite \textit{P. Van Huy} et al., Optimization 71, No. 6, 1721--1748 (2022; Zbl 07548182) Full Text: DOI OpenURL
Yin, Lulu; Liu, Hongwei; Yang, Jun Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities. (English) Zbl 07547196 Appl. Math., Praha 67, No. 3, 273-296 (2022). MSC: 47J25 65K10 65K15 90C25 90C33 PDF BibTeX XML Cite \textit{L. Yin} et al., Appl. Math., Praha 67, No. 3, 273--296 (2022; Zbl 07547196) Full Text: DOI OpenURL
Rehman, Habib ur; Kumam, Poom; Özdemir, Murat; Karahan, Ibrahim Two generalized non-monotone explicit strongly convergent extragradient methods for solving pseudomonotone equilibrium problems and applications. (English) Zbl 07545922 Math. Comput. Simul. 201, 616-639 (2022). MSC: 65-XX 49-XX PDF BibTeX XML Cite \textit{H. u. Rehman} et al., Math. Comput. Simul. 201, 616--639 (2022; Zbl 07545922) Full Text: DOI OpenURL
Ogbuisi, Ferdinard U.; Shehu, Yekini; Yao, Jen-Chih An alternated inertial method for pseudomonotone variational inequalities in Hilbert spaces. (English) Zbl 07545229 Optim. Eng. 23, No. 2, 917-945 (2022). MSC: 65J99 65K15 47J25 47H05 49J40 90C33 90C48 PDF BibTeX XML Cite \textit{F. U. Ogbuisi} et al., Optim. Eng. 23, No. 2, 917--945 (2022; Zbl 07545229) Full Text: DOI OpenURL
Mahalik, K.; Nahak, C. Existence results for a class of variational quasi-mixed hemivariational-like inequalities. (English) Zbl 07544779 Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1877-1901 (2022). MSC: 49J40 47J20 49J27 PDF BibTeX XML Cite \textit{K. Mahalik} and \textit{C. Nahak}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1877--1901 (2022; Zbl 07544779) Full Text: DOI OpenURL
Cuong, Tran Luu; Anh, Tran Viet An iterative method for solving the multiple-sets split variational inequality problem. (English) Zbl 07544771 Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1737-1755 (2022). MSC: 49M37 49J40 49J45 90C26 65K15 PDF BibTeX XML Cite \textit{T. L. Cuong} and \textit{T. V. Anh}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1737--1755 (2022; Zbl 07544771) Full Text: DOI OpenURL
Migórski, Stanisław Well-posedness of constrained evolutionary differential variational-hemivariational inequalities with applications. (English) Zbl 07544591 Nonlinear Anal., Real World Appl. 67, Article ID 103593, 22 p. (2022). MSC: 49J40 49J27 74M15 49S05 74H20 74H25 74H30 PDF BibTeX XML Cite \textit{S. Migórski}, Nonlinear Anal., Real World Appl. 67, Article ID 103593, 22 p. (2022; Zbl 07544591) Full Text: DOI OpenURL
Latif, Abdul; Postolache, Mihai; Alansari, Monirah Omar Backward-forward type algorithm for a class of variational inequalities and fixed point problem. (English) Zbl 07541103 J. Nonlinear Convex Anal. 23, No. 5, 1035-1048 (2022). MSC: 47J25 47H09 49J40 49M05 PDF BibTeX XML Cite \textit{A. Latif} et al., J. Nonlinear Convex Anal. 23, No. 5, 1035--1048 (2022; Zbl 07541103) Full Text: Link OpenURL
Rezapour, Reza Shrinking projection method for demimetric mappings with variational inequality problems in an Hadamard space. (English) Zbl 07541098 J. Nonlinear Convex Anal. 23, No. 5, 957-967 (2022). MSC: 65K15 54H25 54E40 PDF BibTeX XML Cite \textit{R. Rezapour}, J. Nonlinear Convex Anal. 23, No. 5, 957--967 (2022; Zbl 07541098) Full Text: Link OpenURL
Bouaicha, Nour El Houda; Chighoub, Farid; Alia, Ishak; Sohail, Ayesha Conditional LQ time-inconsistent Markov-switching stochastic optimal control problem for diffusion with jumps. (English) Zbl 07540454 Mod. Stoch., Theory Appl. 9, No. 2, 157-205 (2022). MSC: 93E20 49N10 60J74 PDF BibTeX XML Cite \textit{N. E. H. Bouaicha} et al., Mod. Stoch., Theory Appl. 9, No. 2, 157--205 (2022; Zbl 07540454) Full Text: DOI OpenURL
Abass, Hammed Anuoluwapo; Mebawondu, Akindele Adebayo Halpern iteration process for approximating solutions of monotone Yosida variational inclusion, minimization and fixed point problems. (English) Zbl 07540151 Adv. Stud. Contemp. Math., Kyungshang 32, No. 1, 17-29 (2022). MSC: 47J25 47H06 47H09 47J22 PDF BibTeX XML Cite \textit{H. A. Abass} and \textit{A. A. Mebawondu}, Adv. Stud. Contemp. Math., Kyungshang 32, No. 1, 17--29 (2022; Zbl 07540151) Full Text: DOI OpenURL
Owolabi, Abd-semii Oluwatosin-Enitan; Alakoya, Timilehin Opeyemi; Taiwo, Adeolu; Mewomo, Oluwatosin Temitope A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. (English) Zbl 1487.65077 Numer. Algebra Control Optim. 12, No. 2, 255-278 (2022). MSC: 65K15 47J25 65J15 PDF BibTeX XML Cite \textit{A.-s. O. E. Owolabi} et al., Numer. Algebra Control Optim. 12, No. 2, 255--278 (2022; Zbl 1487.65077) Full Text: DOI OpenURL
Adly, Samir; Bourdin, Loïc; Caubet, Fabien Sensitivity analysis of a Tresca-type problem leads to Signorini’s conditions. (English) Zbl 07538047 ESAIM, Control Optim. Calc. Var. 28, Paper No. 29, 29 p. (2022). MSC: 49Q12 49J40 46N10 74M15 PDF BibTeX XML Cite \textit{S. Adly} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 29, 29 p. (2022; Zbl 07538047) Full Text: DOI OpenURL
Kotsalis, Georgios; Lan, Guanghui; Li, Tianjiao Simple and optimal methods for stochastic variational inequalities. II: Markovian noise and policy evaluation in reinforcement learning. (English) Zbl 07535638 SIAM J. Optim. 32, No. 2, 1120-1155 (2022). MSC: 90C33 90C15 62L20 68Q25 PDF BibTeX XML Cite \textit{G. Kotsalis} et al., SIAM J. Optim. 32, No. 2, 1120--1155 (2022; Zbl 07535638) Full Text: DOI OpenURL
Wairojjana, Nopparat; Pholasa, Nattawut; Pakkaranang, Nuttapol On strong convergence theorems for a viscosity-type Tseng’s extragradient methods solving quasimonotone variational inequalities. (English) Zbl 07535233 Nonlinear Funct. Anal. Appl. 27, No. 2, 381-403 (2022). MSC: 47J25 47H09 47H06 49J40 PDF BibTeX XML Cite \textit{N. Wairojjana} et al., Nonlinear Funct. Anal. Appl. 27, No. 2, 381--403 (2022; Zbl 07535233) Full Text: Link OpenURL
Saechou, Kanyanee; Kangtunyakarn, Atid Application of the combination of variational inequalities for fixed point problems and optimization problems. (English) Zbl 07534780 Thai J. Math. 20, No. 1, 79-98 (2022). MSC: 47J20 47H09 46N10 47H08 PDF BibTeX XML Cite \textit{K. Saechou} and \textit{A. Kangtunyakarn}, Thai J. Math. 20, No. 1, 79--98 (2022; Zbl 07534780) Full Text: Link OpenURL
Abubakar, Jamilu; Kumam, Poom; Rehman, Habib ur Self-adaptive inertial subgradient extragradient scheme for pseudomonotone variational inequality problem. (English) Zbl 07533156 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 77-96 (2022). MSC: 65-XX 68-XX PDF BibTeX XML Cite \textit{J. Abubakar} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 77--96 (2022; Zbl 07533156) Full Text: DOI OpenURL
Maldar, Samet Iterative algorithms of generalized nonexpansive mappings and monotone operators with application to convex minimization problem. (English) Zbl 07532907 J. Appl. Math. Comput. 68, No. 3, 1841-1868 (2022). MSC: 47J25 47H09 47H05 PDF BibTeX XML Cite \textit{S. Maldar}, J. Appl. Math. Comput. 68, No. 3, 1841--1868 (2022; Zbl 07532907) Full Text: DOI OpenURL
Tan, Bing; Zhou, Zheng; Li, Songxiao Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems. (English) Zbl 07532886 J. Appl. Math. Comput. 68, No. 2, 1387-1411 (2022). MSC: 47H05 47H09 49J15 47J20 65K15 PDF BibTeX XML Cite \textit{B. Tan} et al., J. Appl. Math. Comput. 68, No. 2, 1387--1411 (2022; Zbl 07532886) Full Text: DOI OpenURL
Guo, Furi; Wang, JinRong; Han, Jiangfeng Dynamic viscoelastic unilateral constrained contact problems with thermal effects. (English) Zbl 07529337 Appl. Math. Comput. 424, Article ID 127034, 18 p. (2022). MSC: 49J40 49J45 49J20 74M15 PDF BibTeX XML Cite \textit{F. Guo} et al., Appl. Math. Comput. 424, Article ID 127034, 18 p. (2022; Zbl 07529337) Full Text: DOI OpenURL
Liu, Jinjie; Yang, Xinmin; Zeng, Shengda; Zhao, Yong Coupled variational inequalities: existence, stability and optimal control. (English) Zbl 07528372 J. Optim. Theory Appl. 193, No. 1-3, 877-909 (2022). MSC: 47J20 49J53 35J87 35J66 58E35 46Txx PDF BibTeX XML Cite \textit{J. Liu} et al., J. Optim. Theory Appl. 193, No. 1--3, 877--909 (2022; Zbl 07528372) Full Text: DOI OpenURL
Fargetta, Georgia; Maugeri, Antonino; Scrimali, Laura A stochastic Nash equilibrium problem for medical supply competition. (English) Zbl 07528353 J. Optim. Theory Appl. 193, No. 1-3, 354-380 (2022). MSC: 90C15 90C46 90B15 49S05 49J40 PDF BibTeX XML Cite \textit{G. Fargetta} et al., J. Optim. Theory Appl. 193, No. 1--3, 354--380 (2022; Zbl 07528353) Full Text: DOI OpenURL
Chadli, Ouayl; Gwinner, Joachim; Nashed, M. Zuhair Noncoercive variational-hemivariational inequalities: existence, approximation by double regularization, and application to nonmonotone contact problems. (English) Zbl 07528340 J. Optim. Theory Appl. 193, No. 1-3, 42-65 (2022). MSC: 49J40 49J27 35J87 74M10 PDF BibTeX XML Cite \textit{O. Chadli} et al., J. Optim. Theory Appl. 193, No. 1--3, 42--65 (2022; Zbl 07528340) Full Text: DOI OpenURL
Cen, Jinxia; Khan, Akhtar A.; Motreanu, Dumitru; Zeng, Shengda Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems. (English) Zbl 1487.49045 Inverse Probl. 38, No. 6, Article ID 065006, 28 p. (2022). MSC: 49N45 49J40 35J40 PDF BibTeX XML Cite \textit{J. Cen} et al., Inverse Probl. 38, No. 6, Article ID 065006, 28 p. (2022; Zbl 1487.49045) Full Text: DOI OpenURL
Gwinner, Joachim From the Fan-KKM principle to extended real-valued equilibria and to variational-hemivariational inequalities with application to nonmonotone contact problems. (English) Zbl 07525633 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 4, 28 p. (2022). MSC: 47J20 47H05 49J40 49J52 74G22 74M10 74M15 PDF BibTeX XML Cite \textit{J. Gwinner}, Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 4, 28 p. (2022; Zbl 07525633) Full Text: DOI OpenURL
Treanţă, Savin On a class of differential quasi-variational-hemivariational inequalities in infinite-dimensional Banach spaces. (English) Zbl 1487.49009 Evol. Equ. Control Theory 11, No. 3, 827-836 (2022). MSC: 49J27 49J40 47J20 49J45 PDF BibTeX XML Cite \textit{S. Treanţă}, Evol. Equ. Control Theory 11, No. 3, 827--836 (2022; Zbl 1487.49009) Full Text: DOI OpenURL
Huang, Jianguo; Wang, Chunmei; Wang, Haoqin A deep learning method for elliptic hemivariational inequalities. (English) Zbl 1485.65070 East Asian J. Appl. Math. 12, No. 3, 487-502 (2022). MSC: 65K15 68T07 68U99 PDF BibTeX XML Cite \textit{J. Huang} et al., East Asian J. Appl. Math. 12, No. 3, 487--502 (2022; Zbl 1485.65070) Full Text: DOI OpenURL
Yazdi, Maryam; Shabani, Mohammad Mehdi; Sababe, Saeed Hashemi An iterative method for equilibrium and constrained convex minimization problems. (English) Zbl 07523625 Kyungpook Math. J. 62, No. 1, 89-106 (2022). MSC: 47J25 47H09 65J15 49J40 PDF BibTeX XML Cite \textit{M. Yazdi} et al., Kyungpook Math. J. 62, No. 1, 89--106 (2022; Zbl 07523625) Full Text: DOI OpenURL
Wega, Getahun Bekele Construction of a solution of split equality variational inequality problem for pseudomonotone mappings in Banach spaces. (English) Zbl 07523114 J. Korean Math. Soc. 59, No. 3, 595-619 (2022). MSC: 47J20 47J05 65K15 90C25 PDF BibTeX XML Cite \textit{G. B. Wega}, J. Korean Math. Soc. 59, No. 3, 595--619 (2022; Zbl 07523114) Full Text: DOI OpenURL
Sofonea, Mircea; Tarzia, Domingo A. Tykhonov well-posedness of a heat transfer problem with unilateral constraints. (English) Zbl 07511500 Appl. Math., Praha 67, No. 2, 167-197 (2022). MSC: 49J40 49J20 49J52 49J45 35A16 35M86 PDF BibTeX XML Cite \textit{M. Sofonea} and \textit{D. A. Tarzia}, Appl. Math., Praha 67, No. 2, 167--197 (2022; Zbl 07511500) Full Text: DOI OpenURL
Tan, Bing; Cho, Sun Young Inertial extragradient algorithms with non-monotone stepsizes for pseudomonotone variational inequalities and applications. (English) Zbl 07507674 Comput. Appl. Math. 41, No. 3, Paper No. 121, 25 p. (2022). MSC: 47J25 47H05 47J20 65K15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, Comput. Appl. Math. 41, No. 3, Paper No. 121, 25 p. (2022; Zbl 07507674) Full Text: DOI OpenURL
Tahraoui, Yassine; Vallet, Guy Lewy-Stampacchia’s inequality for a stochastic T-monotone obstacle problem. (English) Zbl 1486.35041 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 90-125 (2022). MSC: 35B35 35K86 35R35 35R60 60H15 47J20 PDF BibTeX XML Cite \textit{Y. Tahraoui} and \textit{G. Vallet}, Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 90--125 (2022; Zbl 1486.35041) Full Text: DOI OpenURL
Pham Ky Anh; Duong Viet Thong; Nguyen The Vinh Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. (English) Zbl 07507024 Optimization 71, No. 3, 505-528 (2022). MSC: 65Y05 65K15 68W10 47H05 47H10 PDF BibTeX XML Cite \textit{Pham Ky Anh} et al., Optimization 71, No. 3, 505--528 (2022; Zbl 07507024) Full Text: DOI OpenURL
Kwelegano, Karabo M. T.; Zegeye, Habtu; Boikanyo, Oganeditse A. An iterative method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings. (English) Zbl 07501041 Rend. Circ. Mat. Palermo (2) 71, No. 1, 325-348 (2022). MSC: 47H09 47J20 65K15 47J05 90C25 PDF BibTeX XML Cite \textit{K. M. T. Kwelegano} et al., Rend. Circ. Mat. Palermo (2) 71, No. 1, 325--348 (2022; Zbl 07501041) Full Text: DOI OpenURL
Tan, Bing; Qin, Xiaolong Self adaptive viscosity-type inertial extragradient algorithms for solving variational inequalities with applications. (English) Zbl 07499243 Math. Model. Anal. 27, No. 1, 41-58 (2022). MSC: 47H09 47H10 47J20 47J25 49J15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{X. Qin}, Math. Model. Anal. 27, No. 1, 41--58 (2022; Zbl 07499243) Full Text: DOI OpenURL
Linh, Ha Manh; Reich, Simeon; Thong, Duong Viet; Dung, Vu Tien; Lan, Nguyen Phuong Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems. (English) Zbl 07496462 Numer. Algorithms 89, No. 4, 1695-1721 (2022). MSC: 47H09 47J20 65K15 90C25 PDF BibTeX XML Cite \textit{H. M. Linh} et al., Numer. Algorithms 89, No. 4, 1695--1721 (2022; Zbl 07496462) Full Text: DOI OpenURL
Li, Lijie; Lu, Liang; Sofonea, Mircea Generalized penalty method for semilinear differential variational inequalities. (English) Zbl 07495648 Appl. Anal. 101, No. 2, 437-453 (2022). MSC: 47J20 47J35 49J30 49J40 35A15 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Anal. 101, No. 2, 437--453 (2022; Zbl 07495648) Full Text: DOI OpenURL
Gao, Yuan; Liu, Jian-Guo Projection method for droplet dynamics on groove-textured surface with merging and splitting. (English) Zbl 1485.35433 SIAM J. Sci. Comput. 44, No. 2, B310-B338 (2022). MSC: 35R35 35K93 35K86 65K15 74A50 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{J.-G. Liu}, SIAM J. Sci. Comput. 44, No. 2, B310--B338 (2022; Zbl 1485.35433) Full Text: DOI OpenURL
Khludnev, Alexander Non-coercive problems for Kirchhoff-Love plates with thin rigid inclusion. (English) Zbl 1485.35226 Z. Angew. Math. Phys. 73, No. 2, Paper No. 54, 18 p. (2022). MSC: 35J88 74G65 PDF BibTeX XML Cite \textit{A. Khludnev}, Z. Angew. Math. Phys. 73, No. 2, Paper No. 54, 18 p. (2022; Zbl 1485.35226) Full Text: DOI OpenURL
Tan, Bing; Qin, Xiaolong; Yao, Jen-Chih Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems. (English) Zbl 07489938 J. Glob. Optim. 82, No. 3, 523-557 (2022). MSC: 47J25 47H05 47H09 49J15 47J20 65K15 PDF BibTeX XML Cite \textit{B. Tan} et al., J. Glob. Optim. 82, No. 3, 523--557 (2022; Zbl 07489938) Full Text: DOI OpenURL
Bianchi, M.; Kassay, G.; Pini, R. Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization. (English) Zbl 1484.49032 J. Glob. Optim. 82, No. 3, 483-498 (2022). MSC: 49J53 49J40 47H05 PDF BibTeX XML Cite \textit{M. Bianchi} et al., J. Glob. Optim. 82, No. 3, 483--498 (2022; Zbl 1484.49032) Full Text: DOI OpenURL
Truong, N. D.; Kim, J. K.; Anh, T. H. H. Hybrid inertial contraction projection methods extended to variational inequality problems. (English) Zbl 1481.65097 Nonlinear Funct. Anal. Appl. 27, No. 1, 203-221 (2022). MSC: 65K15 90C25 49J35 47J25 47J20 PDF BibTeX XML Cite \textit{N. D. Truong} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 203--221 (2022; Zbl 1481.65097) Full Text: Link OpenURL
Olona, Musa Adewale; Narain, Ojen Kumar Iterative method for solving finite families of variational inequality and fixed point Problems of certain multi-valued mappings. (English) Zbl 1486.47110 Nonlinear Funct. Anal. Appl. 27, No. 1, 149-167 (2022). MSC: 47J25 47H04 47H09 49J40 PDF BibTeX XML Cite \textit{M. A. Olona} and \textit{O. K. Narain}, Nonlinear Funct. Anal. Appl. 27, No. 1, 149--167 (2022; Zbl 1486.47110) Full Text: Link OpenURL
Muangchoo, Kanikar A new explicit extragradient method for solving equilibrium problems with convex constraints. (English) Zbl 07487972 Nonlinear Funct. Anal. Appl. 27, No. 1, 1-22 (2022). MSC: 47J25 47H05 65K15 PDF BibTeX XML Cite \textit{K. Muangchoo}, Nonlinear Funct. Anal. Appl. 27, No. 1, 1--22 (2022; Zbl 07487972) Full Text: Link OpenURL
Santos, Pedro Jorge S.; Santos, Paulo Sérgio M.; Scheimberg, Susana A Newton-type method for quasi-equilibrium problems and applications. (English) Zbl 1484.49059 Optimization 71, No. 1, 7-32 (2022). MSC: 49M37 65K15 90C33 PDF BibTeX XML Cite \textit{P. J. S. Santos} et al., Optimization 71, No. 1, 7--32 (2022; Zbl 1484.49059) Full Text: DOI OpenURL
Singh, Shipra; Gibali, Aviv; Qin, Xiaolong Cooperation in traffic network problems via evolutionary split variational inequalities. (English) Zbl 07475208 J. Ind. Manag. Optim. 18, No. 1, 593-611 (2022). MSC: 90C33 90C39 49J40 PDF BibTeX XML Cite \textit{S. Singh} et al., J. Ind. Manag. Optim. 18, No. 1, 593--611 (2022; Zbl 07475208) Full Text: DOI OpenURL
Khuangsatung, Wongvisarut; Kangtunyakarn, Atid A method for solving the variational inequality problem and fixed point problems in Banach spaces. (English) Zbl 07472890 Tamkang J. Math. 53, No. 1, 23-36 (2022). MSC: 47H05 47H06 47H10 PDF BibTeX XML Cite \textit{W. Khuangsatung} and \textit{A. Kangtunyakarn}, Tamkang J. Math. 53, No. 1, 23--36 (2022; Zbl 07472890) Full Text: DOI OpenURL
Alphonse, Amal; Rautenberg, Carlos N.; Rodrigues, José Francisco Analysis of a quasi-variational contact problem arising in thermoelasticity. (English) Zbl 07472454 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112728, 40 p. (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{A. Alphonse} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112728, 40 p. (2022; Zbl 07472454) Full Text: DOI arXiv OpenURL
Bonacini, Marco; Cristoferi, Riccardo; Topaloglu, Ihsan Riesz-type inequalities and overdetermined problems for triangles and quadrilaterals. (English) Zbl 1485.49051 J. Geom. Anal. 32, No. 2, Paper No. 48, 31 p. (2022). Reviewer: Antoine Henrot (Vandœuvre-lès-Nancy) MSC: 49Q10 49Q20 49J10 49J40 49K21 35N25 PDF BibTeX XML Cite \textit{M. Bonacini} et al., J. Geom. Anal. 32, No. 2, Paper No. 48, 31 p. (2022; Zbl 1485.49051) Full Text: DOI arXiv OpenURL
Piersanti, Paolo On the improved interior regularity of a boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. (English) Zbl 1481.74516 Discrete Contin. Dyn. Syst. 42, No. 2, 1011-1037 (2022). MSC: 74K25 74B05 74G40 35Q74 49J40 PDF BibTeX XML Cite \textit{P. Piersanti}, Discrete Contin. Dyn. Syst. 42, No. 2, 1011--1037 (2022; Zbl 1481.74516) Full Text: DOI OpenURL
Akman, Murat; Gong, Jasun; Hineman, Jay; Lewis, John; Vogel, Andrew The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity. (English) Zbl 1483.35093 Memoirs of the American Mathematical Society 1348. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5052-6/pbk; 978-1-4704-7014-2/ebook). vi, 115 p. (2022). Reviewer: Mariana Vega Smit (Bellingham) MSC: 35J60 31B15 39B62 52A40 35J20 52A20 35J92 PDF BibTeX XML Cite \textit{M. Akman} et al., The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity. Providence, RI: American Mathematical Society (AMS) (2022; Zbl 1483.35093) Full Text: DOI arXiv OpenURL
Zhao, Jing; He, Jiahong; Migórski, Stanisław; Dudek, Sylwia An inverse problem for Bingham type fluids. (English) Zbl 1480.35253 J. Comput. Appl. Math. 404, Article ID 113906, 14 p. (2022). MSC: 35J87 35R30 49N45 PDF BibTeX XML Cite \textit{J. Zhao} et al., J. Comput. Appl. Math. 404, Article ID 113906, 14 p. (2022; Zbl 1480.35253) Full Text: DOI OpenURL
Eslamian, Mohammad Variational inequality over the set of common solutions of a system of bilevel variational inequality problem with applications. (English) Zbl 1483.65082 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 47, 18 p. (2022). MSC: 65J15 47H05 47J25 47J20 PDF BibTeX XML Cite \textit{M. Eslamian}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 47, 18 p. (2022; Zbl 1483.65082) Full Text: DOI OpenURL
Qin, Dongdong; Tang, Xianhua; Zhang, Jian Ground states for planar Hamiltonian elliptic systems with critical exponential growth. (English) Zbl 1478.35196 J. Differ. Equations 308, 130-159 (2022). MSC: 35Q55 35J50 35J60 35J47 35B33 35A01 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Differ. Equations 308, 130--159 (2022; Zbl 1478.35196) Full Text: DOI OpenURL
Lazarev, N.; Rudoy, E. Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies. (English) Zbl 1477.49017 J. Comput. Appl. Math. 403, Article ID 113710, 8 p. (2022). MSC: 49J40 49J20 74G55 74M15 PDF BibTeX XML Cite \textit{N. Lazarev} and \textit{E. Rudoy}, J. Comput. Appl. Math. 403, Article ID 113710, 8 p. (2022; Zbl 1477.49017) Full Text: DOI OpenURL
Baasandorj, Sumiya; Byun, Sun-Sig Irregular obstacle problems for Orlicz double phase. (English) Zbl 1480.35249 J. Math. Anal. Appl. 507, No. 1, Article ID 125791, 21 p. (2022). MSC: 35J87 PDF BibTeX XML Cite \textit{S. Baasandorj} and \textit{S.-S. Byun}, J. Math. Anal. Appl. 507, No. 1, Article ID 125791, 21 p. (2022; Zbl 1480.35249) Full Text: DOI OpenURL
Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N. On the differentiability of the minimal and maximal solution maps of elliptic quasi-variational inequalities. (English) Zbl 1477.49011 J. Math. Anal. Appl. 507, No. 1, Article ID 125732, 19 p. (2022). MSC: 49J40 49J35 PDF BibTeX XML Cite \textit{A. Alphonse} et al., J. Math. Anal. Appl. 507, No. 1, Article ID 125732, 19 p. (2022; Zbl 1477.49011) Full Text: DOI arXiv OpenURL
Jeon, Junkee; Oh, Jehan Finite horizon portfolio selection problem with a drawdown constraint on consumption. (English) Zbl 1471.91501 J. Math. Anal. Appl. 506, No. 1, Article ID 125542, 41 p. (2022). MSC: 91G10 35Q91 60G40 PDF BibTeX XML Cite \textit{J. Jeon} and \textit{J. Oh}, J. Math. Anal. Appl. 506, No. 1, Article ID 125542, 41 p. (2022; Zbl 1471.91501) Full Text: DOI OpenURL
Sun, Guangling; Xu, Lu; Zhang, Ping The uniqueness of the \(L_p\) Minkowski problem for \(q\)-torsional rigidity. (English) Zbl 07559782 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1405-1416 (2021). MSC: 35A02 35J15 52A20 PDF BibTeX XML Cite \textit{G. Sun} et al., Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1405--1416 (2021; Zbl 07559782) Full Text: DOI OpenURL
Eslamian, Mohammad A hierarchical variational inequality problem for generalized demimetric mappings with applications. (English) Zbl 07557736 J. Nonlinear Var. Anal. 5, No. 6, 965-979 (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{M. Eslamian}, J. Nonlinear Var. Anal. 5, No. 6, 965--979 (2021; Zbl 07557736) Full Text: DOI OpenURL
Pham, Duy Khanh; Le, Van Vinh; Phan, Tu Vuong Convergence rate of a gradient projection method for solving variational inequalities. (English) Zbl 07557735 J. Nonlinear Var. Anal. 5, No. 6, 951-964 (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{D. K. Pham} et al., J. Nonlinear Var. Anal. 5, No. 6, 951--964 (2021; Zbl 07557735) Full Text: DOI OpenURL
Thong, Duong Viet; Dong, Qiao-Li; Li, Xiao-Huan; Thang, Hoang Van; Nghia, Pham Van; Van, Nguyen Thi Cam Two extragradient methods for solving variational inequalities in real Hilbert spaces. (English) Zbl 07549310 Linear Nonlinear Anal. 7, No. 3, 387-412 (2021). MSC: 65J15 47H10 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Linear Nonlinear Anal. 7, No. 3, 387--412 (2021; Zbl 07549310) Full Text: Link OpenURL
Stonyakin, Fedor; Tyurin, Alexander; Gasnikov, Alexander; Dvurechensky, Pavel; Agafonov, Artem; Dvinskikh, Darina; Alkousa, Mohammad; Pasechnyuk, Dmitry; Artamonov, Sergei; Piskunova, Victorya Inexact model: a framework for optimization and variational inequalities. (English) Zbl 07540587 Optim. Methods Softw. 36, No. 6, 1155-1201 (2021). MSC: 65K05 65K15 90C06 PDF BibTeX XML Cite \textit{F. Stonyakin} et al., Optim. Methods Softw. 36, No. 6, 1155--1201 (2021; Zbl 07540587) Full Text: DOI OpenURL
Zhao, Jing; Migórski, Stanisław; Dudek, Sylwia Analysis of Stokes system with solution-dependent subdifferential boundary conditions. (English) Zbl 07525623 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 19, 18 p. (2021). MSC: 35J66 35J87 47J20 49J40 76D05 PDF BibTeX XML Cite \textit{J. Zhao} et al., Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 19, 18 p. (2021; Zbl 07525623) Full Text: DOI OpenURL
Khammahawong, Konrawut; Kumam, Poom; Chaipunya, Parin; Plubtieng, Somyot New Tseng’s extragradient methods for pseudomonotone variational inequality problems in Hadamard manifolds. (English) Zbl 07525609 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 5, 20 p. (2021). MSC: 47J20 51H25 65C10 90C33 PDF BibTeX XML Cite \textit{K. Khammahawong} et al., Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 5, 20 p. (2021; Zbl 07525609) Full Text: DOI OpenURL
Rehman, Habib ur; Kumam, Poom; Sitthithakerngkiet, Kanokwan Viscosity-type method for solving pseudomonotone equilibrium problems in a real Hilbert space with applications. (English) Zbl 1484.47166 AIMS Math. 6, No. 2, 1538-1560 (2021). MSC: 47J25 47H05 47H10 49J40 91B50 PDF BibTeX XML Cite \textit{H. u. Rehman} et al., AIMS Math. 6, No. 2, 1538--1560 (2021; Zbl 1484.47166) Full Text: DOI OpenURL
Zhang, Baoshuai; Tian, Ying Strong and weak convergence theorems for general mixed equilibrium, general variational inequality, and fixed point problems for two nonexpansive semigroups in Hilbert spaces. (English. Russian original) Zbl 07513512 Russ. Phys. J. 64, No. 5, 937-948 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 64, No. 5, 152-160 (2021). MSC: 81-XX PDF BibTeX XML Cite \textit{B. Zhang} and \textit{Y. Tian}, Russ. Phys. J. 64, No. 5, 937--948 (2021; Zbl 07513512); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 64, No. 5, 152--160 (2021) Full Text: DOI OpenURL
Migot, Tangi; Cojocaru, Monica-G. A decomposition method for a class of convex generalized Nash equilibrium problems. (English) Zbl 07512259 Optim. Eng. 22, No. 3, 1653-1679 (2021). MSC: 91A11 65K05 90C33 PDF BibTeX XML Cite \textit{T. Migot} and \textit{M.-G. Cojocaru}, Optim. Eng. 22, No. 3, 1653--1679 (2021; Zbl 07512259) Full Text: DOI OpenURL
Lazarev, Nyurgun Inverse problem for cracked inhomogeneous Kirchhoff-Love plate with two hinged rigid inclusions. (English) Zbl 1486.49051 Bound. Value Probl. 2021, Paper No. 88, 12 p. (2021). MSC: 49N45 49J40 PDF BibTeX XML Cite \textit{N. Lazarev}, Bound. Value Probl. 2021, Paper No. 88, 12 p. (2021; Zbl 1486.49051) Full Text: DOI OpenURL
Baiz, Othmane; Benaissa, Hicham; Bouchantouf, Rachid; El Moutawakil, Driss Optimization problems for a thermoelastic frictional contact problem. (English) Zbl 1486.35223 Math. Model. Anal. 26, No. 3, 444-468 (2021). MSC: 35J87 35A01 PDF BibTeX XML Cite \textit{O. Baiz} et al., Math. Model. Anal. 26, No. 3, 444--468 (2021; Zbl 1486.35223) Full Text: DOI OpenURL
Suwannaut, Sarawut; Kangtunyakarn, Atid On approximation of the combination of variational inequality problem and equilibrium problem for nonlinear mappings. (English) Zbl 07489173 Thai J. Math. 19, No. 4, 1477-1498 (2021). MSC: 47H09 47H10 47J20 90C33 PDF BibTeX XML Cite \textit{S. Suwannaut} and \textit{A. Kangtunyakarn}, Thai J. Math. 19, No. 4, 1477--1498 (2021; Zbl 07489173) Full Text: Link OpenURL
Ram, Tirth; Kim, Jong Kyu; Kour, Ravdeep On optimal solutions of well-posed problems and variational inequalities. (English) Zbl 07487949 Nonlinear Funct. Anal. Appl. 26, No. 4, 781-792 (2021). MSC: 49J40 49K40 52A07 PDF BibTeX XML Cite \textit{T. Ram} et al., Nonlinear Funct. Anal. Appl. 26, No. 4, 781--792 (2021; Zbl 07487949) Full Text: Link OpenURL
Hai, Trinh Ngoc A simple fork algorithm for solving pseudomonotone non-Lipschitz variational inequalities. (English) Zbl 1480.65155 Int. J. Comput. Math. 98, No. 9, 1807-1820 (2021). MSC: 65K15 90C25 PDF BibTeX XML Cite \textit{T. N. Hai}, Int. J. Comput. Math. 98, No. 9, 1807--1820 (2021; Zbl 1480.65155) Full Text: DOI OpenURL
Mellah, Zhor; Bekkaye Mermri, El Projection/fixed point method for solving a semilinear obstacle problem. (English) Zbl 1480.65156 Int. J. Comput. Math. 98, No. 5, 999-1014 (2021). MSC: 65K15 49J40 PDF BibTeX XML Cite \textit{Z. Mellah} and \textit{E. Bekkaye Mermri}, Int. J. Comput. Math. 98, No. 5, 999--1014 (2021; Zbl 1480.65156) Full Text: DOI OpenURL
Jung, Jong Soo Some iterative algorithms for constrained convex minimization, generalized mixed equilibrium and fixed point problems. (English) Zbl 07476165 Linear Nonlinear Anal. 7, No. 2, 199-227 (2021). Reviewer: Gilles Evéquoz (Delémont) MSC: 49J40 47H09 47H10 47J20 47J25 47J05 PDF BibTeX XML Cite \textit{J. S. Jung}, Linear Nonlinear Anal. 7, No. 2, 199--227 (2021; Zbl 07476165) Full Text: Link OpenURL
Rehman, Habib ur; Kumam, Wiyada; Sombut, Kamonrat A novel inertial subgradient extragradientt for solving quasi-monotone variational inequalities. (English) Zbl 07475079 Thai J. Math. 19, No. 3, 981-992 (2021). MSC: 47J25 47H09 47H06 47J05 PDF BibTeX XML Cite \textit{H. u. Rehman} et al., Thai J. Math. 19, No. 3, 981--992 (2021; Zbl 07475079) Full Text: Link OpenURL
Wairojjana, Nopparat; Pakkaranang, Nuttapol; Jirakitpuwapat, Wachirapong; Pholasa, Nattawut The Tseng’s extragradient method for quasimonotone variational inequalities. (English) Zbl 07475073 Thai J. Math. 19, No. 3, 913-923 (2021). MSC: 47H06 47H09 47J05 47J25 PDF BibTeX XML Cite \textit{N. Wairojjana} et al., Thai J. Math. 19, No. 3, 913--923 (2021; Zbl 07475073) Full Text: Link OpenURL
Kesornprom, Suparat; Cholamjiak, Prasit; Cholamjiak, Watcharaporn Strong convergence of a parallel extragradient-like algorithm involving pseudo-monotone mappings for solving common variational inequality problems. (English) Zbl 07475069 Thai J. Math. 19, No. 3, 854-864 (2021). MSC: 47H04 47H10 47H07 PDF BibTeX XML Cite \textit{S. Kesornprom} et al., Thai J. Math. 19, No. 3, 854--864 (2021; Zbl 07475069) Full Text: Link OpenURL
Vilches, Emilio; Zeng, Shengda Hidden maximal monotonicity in evolutionary variational-hemivariational inequalities. (English) Zbl 07473973 Nonlinear Anal., Model. Control 26, No. 6, 1144-1165 (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 49J40 PDF BibTeX XML Cite \textit{E. Vilches} and \textit{S. Zeng}, Nonlinear Anal., Model. Control 26, No. 6, 1144--1165 (2021; Zbl 07473973) Full Text: DOI OpenURL
Hay, Ihssane; Bnouhachem, Abdellah; Rassias, Themistocles M. An iterative method for a common solution of a combination of the split equilibrium problem, a finite family of nonexpansive mapping and a combination of variational inequality problem. (English) Zbl 1482.49004 Tamkang J. Math. 52, No. 3, 413-441 (2021). MSC: 49J27 49J40 47H09 47J20 PDF BibTeX XML Cite \textit{I. Hay} et al., Tamkang J. Math. 52, No. 3, 413--441 (2021; Zbl 1482.49004) Full Text: DOI OpenURL
Tian, Ming; Xu, Gang Improved inertial projection and contraction method for solving pseudomonotone variational inequality problems. (English) Zbl 07465085 J. Inequal. Appl. 2021, Paper No. 107, 20 p. (2021). MSC: 47J25 49J40 47H05 90C33 65K15 PDF BibTeX XML Cite \textit{M. Tian} and \textit{G. Xu}, J. Inequal. Appl. 2021, Paper No. 107, 20 p. (2021; Zbl 07465085) Full Text: DOI OpenURL
Ur Rehman, Habib; Kumam, Poom; Gibali, Aviv; Kumam, Wiyada Convergence analysis of a general inertial projection-type method for solving pseudomonotone equilibrium problems with applications. (English) Zbl 07465042 J. Inequal. Appl. 2021, Paper No. 63, 27 p. (2021). MSC: 90Cxx 49Jxx 47Jxx PDF BibTeX XML Cite \textit{H. Ur Rehman} et al., J. Inequal. Appl. 2021, Paper No. 63, 27 p. (2021; Zbl 07465042) Full Text: DOI OpenURL
AlNemer, Ghada; Ali, Rehan; Kazmi, K. R. Inertial KM-type extragradient scheme for solving a variational inequality and a hierarchical fixed point problems. (English) Zbl 07465017 J. Inequal. Appl. 2021, Paper No. 38, 14 p. (2021). MSC: 47J25 47H09 49J35 90C47 PDF BibTeX XML Cite \textit{G. AlNemer} et al., J. Inequal. Appl. 2021, Paper No. 38, 14 p. (2021; Zbl 07465017) Full Text: DOI OpenURL
Sofonea, Mircea; Xiao, Yi-bin; Zeng, Sheng-da Generalized penalty method for history-dependent variational-hemivariational inequalities. (English) Zbl 1480.49015 Nonlinear Anal., Real World Appl. 61, Article ID 103329, 20 p. (2021). MSC: 49J40 35R35 35J86 35J87 74K10 49J27 PDF BibTeX XML Cite \textit{M. Sofonea} et al., Nonlinear Anal., Real World Appl. 61, Article ID 103329, 20 p. (2021; Zbl 1480.49015) Full Text: DOI OpenURL
Chaichuay, Chinda; Kangtunyakarn, Atid The method for solving the split equality variational inequality problem and application. (English) Zbl 1482.47111 Thai J. Math. 19, No. 2, 635-652 (2021). MSC: 47J20 47H05 PDF BibTeX XML Cite \textit{C. Chaichuay} and \textit{A. Kangtunyakarn}, Thai J. Math. 19, No. 2, 635--652 (2021; Zbl 1482.47111) Full Text: Link OpenURL
Garaev, K. G. Remark to the main problem of calculus of variations. (English) Zbl 1479.49006 Lobachevskii J. Math. 42, No. 12, 2785-2788 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 49J20 PDF BibTeX XML Cite \textit{K. G. Garaev}, Lobachevskii J. Math. 42, No. 12, 2785--2788 (2021; Zbl 1479.49006) Full Text: DOI OpenURL
Ran, Qinghua; Cheng, Xiaoliang A new numerical method for solving a bilateral obstacle problem. (Chinese. English summary) Zbl 07448220 Appl. Math., Ser. A (Chin. Ed.) 36, No. 2, 208-216 (2021). MSC: 65K15 PDF BibTeX XML Cite \textit{Q. Ran} and \textit{X. Cheng}, Appl. Math., Ser. A (Chin. Ed.) 36, No. 2, 208--216 (2021; Zbl 07448220) Full Text: DOI OpenURL