Sujanani, Arnesh; Monteiro, Renato D. C. An adaptive superfast inexact proximal augmented Lagrangian method for smooth nonconvex composite optimization problems. (English) Zbl 07751615 J. Sci. Comput. 97, No. 2, Paper No. 34, 41 p. (2023). MSC: 90C26 90C30 65K10 90C60 47J22 PDF BibTeX XML Cite \textit{A. Sujanani} and \textit{R. D. C. Monteiro}, J. Sci. Comput. 97, No. 2, Paper No. 34, 41 p. (2023; Zbl 07751615) Full Text: DOI arXiv
Li, Cui-Xia; Wu, Shi-Liang A class of modulus-based matrix splitting methods for vertical linear complementarity problem. (English) Zbl 07747929 Optimization 72, No. 10, 2499-2516 (2023). MSC: 65K05 90C33 65F10 65F50 PDF BibTeX XML Cite \textit{C.-X. Li} and \textit{S.-L. Wu}, Optimization 72, No. 10, 2499--2516 (2023; Zbl 07747929) Full Text: DOI
Pandey, S. C.; Raturi, A. K. On solutions to the arms race model using some techniques of fractional calculus. (English) Zbl 07743256 J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45-60 (2023). MSC: 26A33 35A99 91B74 PDF BibTeX XML Cite \textit{S. C. Pandey} and \textit{A. K. Raturi}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45--60 (2023; Zbl 07743256) Full Text: Link
Shirazian, Mohammad A new acceleration of variational iteration method for initial value problems. (English) Zbl 07736770 Math. Comput. Simul. 214, 246-259 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. Shirazian}, Math. Comput. Simul. 214, 246--259 (2023; Zbl 07736770) Full Text: DOI
Zuo, Jiarong; Yang, Juan Approximation properties of residual neural networks for fractional differential equations. (English) Zbl 07733068 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107399, 17 p. (2023). MSC: 34A08 34B15 34A45 PDF BibTeX XML Cite \textit{J. Zuo} and \textit{J. Yang}, Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107399, 17 p. (2023; Zbl 07733068) Full Text: DOI
Adona, Vando A.; Gonçalves, Max L. N. An inexact version of the symmetric proximal ADMM for solving separable convex optimization. (English) Zbl 07730420 Numer. Algorithms 94, No. 1, 1-28 (2023). MSC: 65-XX 47H05 49M27 90C25 90C60 65K10 PDF BibTeX XML Cite \textit{V. A. Adona} and \textit{M. L. N. Gonçalves}, Numer. Algorithms 94, No. 1, 1--28 (2023; Zbl 07730420) Full Text: DOI arXiv
Benkhira, EL-Hassan; Fakhar, Rachid; Mandyly, Youssef Analysis and numerical approach of a coupled thermo-electro-mechanical system for nonlinear Hencky-type materials with nonlocal Coulomb’s friction. (English) Zbl 07709798 Numer. Funct. Anal. Optim. 44, No. 8, 841-866 (2023). MSC: 74C05 35J87 49J40 47J25 37M05 65N55 74S05 PDF BibTeX XML Cite \textit{E.-H. Benkhira} et al., Numer. Funct. Anal. Optim. 44, No. 8, 841--866 (2023; Zbl 07709798) Full Text: DOI
Afraz, Homa; Saberi-Nadjafi, Jafar; Gachpazan, Morteza; Jafari, Hossein Local fractional Yang-Laplace variational method for solving KdV equation on Cantor set. (English) Zbl 07708089 J. Math. Ext. 17, No. 3, Paper No. 2, 21 p. (2023). MSC: 35R11 PDF BibTeX XML Cite \textit{H. Afraz} et al., J. Math. Ext. 17, No. 3, Paper No. 2, 21 p. (2023; Zbl 07708089) Full Text: DOI
Kondo, Atsumasa Strong convergence to common fixed points using Ishikawa and hybrid methods for mean-demiclosed mappings in Hilbert spaces. (English) Zbl 07706394 Math. Model. Anal. 28, No. 2, 285-307 (2023). MSC: 47H09 47J20 47J26 PDF BibTeX XML Cite \textit{A. Kondo}, Math. Model. Anal. 28, No. 2, 285--307 (2023; Zbl 07706394) Full Text: DOI
Su, Yu; Liu, Zhisu Semi-classical states for the Choquard equations with doubly critical exponents: existence, multiplicity and concentration. (English) Zbl 07702103 Asymptotic Anal. 132, No. 3-4, 451-493 (2023). MSC: 35Q55 35B33 35A15 35B09 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Su} and \textit{Z. Liu}, Asymptotic Anal. 132, No. 3--4, 451--493 (2023; Zbl 07702103) Full Text: DOI
Zhang, Ri; Shah, Nehad Ali; El-Zahar, Essam R.; Akgül, Ali; Chung, Jae Dong Numerical analysis of fractional-order Emden-Fowler equations using modified variational iteration method. (English) Zbl 1518.35655 Fractals 31, No. 2, Article ID 2340028, 15 p. (2023). MSC: 35R11 35A22 35A35 PDF BibTeX XML Cite \textit{R. Zhang} et al., Fractals 31, No. 2, Article ID 2340028, 15 p. (2023; Zbl 1518.35655) Full Text: DOI
Izuchukwu, Chinedu; Reich, Simeon; Shehu, Yekini; Taiwo, Adeolu Strong convergence of forward-reflected-backward splitting methods for solving monotone inclusions with applications to image restoration and optimal control. (English) Zbl 07698833 J. Sci. Comput. 94, No. 3, Paper No. 73, 31 p. (2023). MSC: 47H09 47H10 49J20 49J40 PDF BibTeX XML Cite \textit{C. Izuchukwu} et al., J. Sci. Comput. 94, No. 3, Paper No. 73, 31 p. (2023; Zbl 07698833) Full Text: DOI arXiv
Li, Cui-Xia; Wu, Shi-Liang Modulus-based matrix splitting methods for complex linear complementarity problem. (English) Zbl 1512.65051 J. Comput. Appl. Math. 427, Article ID 115139, 17 p. (2023). MSC: 65F10 90C33 PDF BibTeX XML Cite \textit{C.-X. Li} and \textit{S.-L. Wu}, J. Comput. Appl. Math. 427, Article ID 115139, 17 p. (2023; Zbl 1512.65051) Full Text: DOI
Huang, Zhengge; Cui, Jingjing The double-relaxation modulus-based matrix splitting iteration method for linear complementarity problems. (English) Zbl 1512.65048 J. Comput. Appl. Math. 427, Article ID 115138, 30 p. (2023). MSC: 65F10 65H10 90C33 PDF BibTeX XML Cite \textit{Z. Huang} and \textit{J. Cui}, J. Comput. Appl. Math. 427, Article ID 115138, 30 p. (2023; Zbl 1512.65048) Full Text: DOI
Bello-Cruz, Yunier; Gonçalves, Max L. N.; Krislock, Nathan On FISTA with a relative error rule. (English) Zbl 1516.90046 Comput. Optim. Appl. 84, No. 2, 295-318 (2023). MSC: 90C25 47H05 47J22 49M27 PDF BibTeX XML Cite \textit{Y. Bello-Cruz} et al., Comput. Optim. Appl. 84, No. 2, 295--318 (2023; Zbl 1516.90046) Full Text: DOI
Kong, Weiwei; Melo, Jefferson G.; Monteiro, Renato D. C. Iteration complexity of an inner accelerated inexact proximal augmented Lagrangian method based on the classical Lagrangian function. (English) Zbl 07669688 SIAM J. Optim. 33, No. 1, 181-210 (2023). MSC: 47J22 49M27 90C25 90C26 90C30 90C60 65K10 PDF BibTeX XML Cite \textit{W. Kong} et al., SIAM J. Optim. 33, No. 1, 181--210 (2023; Zbl 07669688) Full Text: DOI arXiv
Huang, Zhengge; Cui, Jingjing A relaxation two-sweep modulus-based matrix splitting iteration method for horizontal linear complementarity problems. (English) Zbl 1515.65152 Japan J. Ind. Appl. Math. 40, No. 1, 141-182 (2023). MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{Z. Huang} and \textit{J. Cui}, Japan J. Ind. Appl. Math. 40, No. 1, 141--182 (2023; Zbl 1515.65152) Full Text: DOI
Tomar, Saurabh; Singh, Mehakpreet; Vajravelu, Kuppalapalle; Ramos, Higinio Simplifying the variational iteration method: a new approach to obtain the Lagrange multiplier. (English) Zbl 07619077 Math. Comput. Simul. 204, 640-644 (2023). MSC: 65-XX 49-XX PDF BibTeX XML Cite \textit{S. Tomar} et al., Math. Comput. Simul. 204, 640--644 (2023; Zbl 07619077) Full Text: DOI
Wu, Yu-Jiang; Zhang, Wei-Hong; Yang, Ai-Li Modulus-based inexact non-alternating preconditioned splitting method for linear complementarity problems. (English) Zbl 1518.90118 Linear Multilinear Algebra 70, No. 22, 7414-7432 (2022). MSC: 90C33 65F10 65F50 PDF BibTeX XML Cite \textit{Y.-J. Wu} et al., Linear Multilinear Algebra 70, No. 22, 7414--7432 (2022; Zbl 1518.90118) Full Text: DOI
Peng, Shiyu; Weng, Hongming; Dai, Xi RTGW2020: an efficient implementation of the multi-orbital Gutzwiller method with general local interactions. (English) Zbl 1521.81497 Comput. Phys. Commun. 276, Article ID 108348, 20 p. (2022). MSC: 81V70 81Q35 78A25 47A10 39B12 17B22 15A20 70H45 70M20 65R10 PDF BibTeX XML Cite \textit{S. Peng} et al., Comput. Phys. Commun. 276, Article ID 108348, 20 p. (2022; Zbl 1521.81497) Full Text: DOI
Ho, Ky; Nhan, Le Cong; Truong, Le Xuan A-priori bound and Hölder continuity of solutions to degenerate elliptic equations with variable exponents. (English) Zbl 1509.35077 Topol. Methods Nonlinear Anal. 60, No. 2, 601-632 (2022). MSC: 35B45 35B65 35D30 35J20 35J25 35J62 35J70 PDF BibTeX XML Cite \textit{K. Ho} et al., Topol. Methods Nonlinear Anal. 60, No. 2, 601--632 (2022; Zbl 1509.35077) Full Text: DOI Link
Harir, Atimad; El Harfi, Hassan; Melliani, Said; Chadli, L. Saadia Fuzzy solutions of the SIR models using VIM. (English) Zbl 1514.34078 Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 30, No. 1, 43-61 (2022). MSC: 34C60 92D30 34A07 34A45 26E50 PDF BibTeX XML Cite \textit{A. Harir} et al., Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 30, No. 1, 43--61 (2022; Zbl 1514.34078) Full Text: DOI
Tebyakin, Alekseĭ Dmitrievich; Krys’ko, Anton Vadimovich; Zhigalov, Maksim Viktorovich; Krys’ko, Vadim Anatol’evich Elastic-plastic deformation of nanoplates. The method of variational iterations (extended Kantorovich method). (Russian. English summary) Zbl 1505.74138 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 22, No. 4, 494-505 (2022). MSC: 74K20 PDF BibTeX XML Cite \textit{A. D. Tebyakin} et al., Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 22, No. 4, 494--505 (2022; Zbl 1505.74138) Full Text: DOI MNR
Yindoula, Joseph Bonazebi; Wellot, Yanick Alain Servais; Nkaya, Gires Dimitri; Yindoula, Deryl Nathan Bonazebi A comparative study of Adomian decomposition method and variational iteration method. (English) Zbl 1515.65137 Univers. J. Math. Math. Sci. 17, 1-30 (2022). MSC: 65J15 PDF BibTeX XML Cite \textit{J. B. Yindoula} et al., Univers. J. Math. Math. Sci. 17, 1--30 (2022; Zbl 1515.65137) Full Text: DOI
Gwinner, Joachim A self-adaptive projection method for the solution of set-valued strongly monotone variational inequalities in Hilbert space. (English) Zbl 07620759 J. Nonlinear Convex Anal. 23, No. 2, 215-222 (2022). MSC: 47J40 47J20 74C05 PDF BibTeX XML Cite \textit{J. Gwinner}, J. Nonlinear Convex Anal. 23, No. 2, 215--222 (2022; Zbl 07620759) Full Text: Link
Wagner, Werner; Gruttmann, Friedrich On a nonlinear elastic composite shell model with a refined 3D stress analysis. (English) Zbl 1504.74076 Aldakheel, Fadi (ed.) et al., Current trends and open problems in computational mechanics. Cham: Springer. 553-567 (2022). MSC: 74S05 74K25 74E30 74B20 PDF BibTeX XML Cite \textit{W. Wagner} and \textit{F. Gruttmann}, in: Current trends and open problems in computational mechanics. Cham: Springer. 553--567 (2022; Zbl 1504.74076) Full Text: DOI
Khalouta, Ali On the solutions of nonlinear Caputo-Fabrizio fractional partial differential equations arising in applied mathematics. (English) Zbl 1500.35298 J. Prime Res. Math. 18, No. 2, 42-54 (2022). MSC: 35R11 35A22 PDF BibTeX XML Cite \textit{A. Khalouta}, J. Prime Res. Math. 18, No. 2, 42--54 (2022; Zbl 1500.35298) Full Text: Link
Manjare, N. B.; Dinde, H. T. Variational iteration method for fractional partial differential equations – a universal approach by Sumudu transform. (English) Zbl 07601467 South East Asian J. Math. Math. Sci. 18, No. 2, 349-368 (2022). MSC: 65R10 26A33 65M12 35R11 PDF BibTeX XML Cite \textit{N. B. Manjare} and \textit{H. T. Dinde}, South East Asian J. Math. Math. Sci. 18, No. 2, 349--368 (2022; Zbl 07601467) Full Text: Link
Song, Shanshan; Li, Chenliang A class of smooth modulus-based matrix iteration methods for solving tensor complementarity problem. (Chinese. English summary) Zbl 1513.90208 Math. Numer. Sin. 44, No. 2, 178-186 (2022). MSC: 90C33 PDF BibTeX XML Cite \textit{S. Song} and \textit{C. Li}, Math. Numer. Sin. 44, No. 2, 178--186 (2022; Zbl 1513.90208) Full Text: DOI
Kaźmierczak, Anna; Orpel, Aleksandra Positive solutions to the nonlinear reactor model by variational iteration method. (English) Zbl 1498.92351 J. Math. Chem. 60, No. 9, 1781-1799 (2022). MSC: 92E20 34B18 34A34 65L10 PDF BibTeX XML Cite \textit{A. Kaźmierczak} and \textit{A. Orpel}, J. Math. Chem. 60, No. 9, 1781--1799 (2022; Zbl 1498.92351) Full Text: DOI
Huang, Zhengge; Cui, Jingjing An efficient modulus-based matrix splitting iteration method for quasi-complementarity problems. (English) Zbl 1513.65180 Comput. Appl. Math. 41, No. 6, Paper No. 296, 35 p. (2022). MSC: 65K05 65F10 90C33 PDF BibTeX XML Cite \textit{Z. Huang} and \textit{J. Cui}, Comput. Appl. Math. 41, No. 6, Paper No. 296, 35 p. (2022; Zbl 1513.65180) Full Text: DOI
Govindaraj, Suganya; Rathinam, Senthamarai Approximate analytical expression of diffusive Lotka-Volterra prey-predator equations via variational iteration method. (English) Zbl 1497.37111 J. Appl. Nonlinear Dyn. 11, No. 3, 741-753 (2022). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{S. Govindaraj} and \textit{S. Rathinam}, J. Appl. Nonlinear Dyn. 11, No. 3, 741--753 (2022; Zbl 1497.37111) Full Text: DOI
Ma, Changfeng; Ma, Feiyang The improved convergence theorems of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with \(H\)-matrices. (Chinese. English summary) Zbl 1513.90204 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 583-593 (2022). MSC: 90C33 PDF BibTeX XML Cite \textit{C. Ma} and \textit{F. Ma}, Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 2, 583--593 (2022; Zbl 1513.90204) Full Text: Link
Wu, Shiliang; Li, Liang New modulus-based matrix splitting methods for implicit complementarity problem. (English) Zbl 1508.65029 Numer. Algorithms 90, No. 4, 1735-1754 (2022). MSC: 65F10 65F50 65K05 90C33 PDF BibTeX XML Cite \textit{S. Wu} and \textit{L. Li}, Numer. Algorithms 90, No. 4, 1735--1754 (2022; Zbl 1508.65029) Full Text: DOI
Roshan, Alireza; Ahmadi, Masoumeh; Ganji, Davood Domiri Variational iteration method (VIM) and parameter perturbation method (PPM) for the solution of nonlinear differential equation of beam elastic deformation. (English) Zbl 1513.74113 Southeast Asian Bull. Math. 46, No. 1, 35-44 (2022). MSC: 74K10 PDF BibTeX XML Cite \textit{A. Roshan} et al., Southeast Asian Bull. Math. 46, No. 1, 35--44 (2022; Zbl 1513.74113) Full Text: Link
Ali, Rashid; Pan, Kejia; Ali, Asad Two new iteration methods with optimal parameters for solving absolute value equations. (English) Zbl 1489.65070 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 123, 11 p. (2022). MSC: 65H10 90C33 90C59 PDF BibTeX XML Cite \textit{R. Ali} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 123, 11 p. (2022; Zbl 1489.65070) Full Text: DOI
Li, Nan; Ding, Jian; Yin, Jun-Feng Modified relaxation two-sweep modulus-based matrix splitting iteration method for solving a class of implicit complementarity problems. (English) Zbl 1493.65116 J. Comput. Appl. Math. 413, Article ID 114370, 12 p. (2022). MSC: 65K15 90C33 PDF BibTeX XML Cite \textit{N. Li} et al., J. Comput. Appl. Math. 413, Article ID 114370, 12 p. (2022; Zbl 1493.65116) Full Text: DOI
Zadeh, Ahmad Haji; Jacob, Kavikumar; Shah, Nehad Ali; Chung, Jae Dong Fractional-view analysis of Jaulent-Miodek equation via novel analytical techniques. (English) Zbl 1493.35134 J. Funct. Spaces 2022, Article ID 5746130, 11 p. (2022). MSC: 35R11 35C10 PDF BibTeX XML Cite \textit{A. H. Zadeh} et al., J. Funct. Spaces 2022, Article ID 5746130, 11 p. (2022; Zbl 1493.35134) Full Text: DOI
Glowinski, Roland; Song, Yongcun; Yuan, Xiaoming; Yue, Hangrui Application of the alternating direction method of multipliers to control constrained parabolic optimal control problems and beyond. (English) Zbl 1499.49090 Ann. Appl. Math. 38, No. 2, 115-158 (2022). MSC: 49M41 35Q90 35Q93 65K05 65K10 90C25 PDF BibTeX XML Cite \textit{R. Glowinski} et al., Ann. Appl. Math. 38, No. 2, 115--158 (2022; Zbl 1499.49090) Full Text: DOI
Baiz, Othmane; Benaissa, Hicham Finite element approximation and numerical analysis of thermoelectroelastic frictional contact problem with frictional heating. (English) Zbl 1499.74035 Comput. Appl. Math. 41, No. 4, Paper No. 145, 25 p. (2022). MSC: 74F05 74F15 74G30 74M10 74M15 74S05 PDF BibTeX XML Cite \textit{O. Baiz} and \textit{H. Benaissa}, Comput. Appl. Math. 41, No. 4, Paper No. 145, 25 p. (2022; Zbl 1499.74035) Full Text: DOI
Fang, Ximing The convergence of the modulus-based Jacobi (MJ) iteration method for solving horizontal linear complementarity problems. (English) Zbl 1499.65215 Comput. Appl. Math. 41, No. 4, Paper No. 134, 16 p. (2022). MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{X. Fang}, Comput. Appl. Math. 41, No. 4, Paper No. 134, 16 p. (2022; Zbl 1499.65215) Full Text: DOI
Bekir, Ahmet; Shehata, Maha S. M.; Zahran, Emad H. M. New optical soliton solutions for the thin-film ferroelectric materials equation instead of the numerical solution. (English) Zbl 1499.35158 Comput. Methods Differ. Equ. 10, No. 1, 158-167 (2022). MSC: 35C08 35Q60 PDF BibTeX XML Cite \textit{A. Bekir} et al., Comput. Methods Differ. Equ. 10, No. 1, 158--167 (2022; Zbl 1499.35158) Full Text: DOI
Wang, Xuechuan; Long, Xinjun; Yue, Xiaokui; Dai, Honghua; Atluri, Satya N. Bifurcation analysis of stick-slip vibration in a 2-DOF nonlinear dynamical system with dry friction. (English) Zbl 1514.70028 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106475, 20 p. (2022). MSC: 70K50 70K55 70F40 PDF BibTeX XML Cite \textit{X. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106475, 20 p. (2022; Zbl 1514.70028) Full Text: DOI
Wu, Shiliang; Li, Cuixia A class of new modulus-based matrix splitting methods for linear complementarity problem. (English) Zbl 1492.90184 Optim. Lett. 16, No. 5, 1427-1443 (2022). MSC: 90C33 65F10 65F50 65G40 PDF BibTeX XML Cite \textit{S. Wu} and \textit{C. Li}, Optim. Lett. 16, No. 5, 1427--1443 (2022; Zbl 1492.90184) Full Text: DOI
Li, Cui-Xia; Yong, Long-Quan Modified bas iteration method for absolute value equation. (English) Zbl 1484.65060 AIMS Math. 7, No. 1, 606-616 (2022). MSC: 65F10 90C05 90C30 90C33 PDF BibTeX XML Cite \textit{C.-X. Li} and \textit{L.-Q. Yong}, AIMS Math. 7, No. 1, 606--616 (2022; Zbl 1484.65060) Full Text: DOI
Thuy Thi Thu Le; Nguyen, Loc Hoang A convergent numerical method to recover the initial condition of nonlinear parabolic equations from lateral Cauchy data. (English) Zbl 1487.65143 J. Inverse Ill-Posed Probl. 30, No. 2, 265-286 (2022). MSC: 65M32 65M30 65K10 65M12 35K55 35J60 42A38 35R30 PDF BibTeX XML Cite \textit{Thuy Thi Thu Le} and \textit{L. H. Nguyen}, J. Inverse Ill-Posed Probl. 30, No. 2, 265--286 (2022; Zbl 1487.65143) Full Text: DOI arXiv
Chaudhary, Sudhakar; Srivastava, Vimal Semi-discrete finite-element approximation of nonlocal hyperbolic problem. (English) Zbl 1491.65090 Appl. Anal. 101, No. 2, 479-496 (2022). MSC: 65M60 65M06 65N30 65K10 65M12 65M15 65N22 35D35 35R09 35L72 74K05 74S05 PDF BibTeX XML Cite \textit{S. Chaudhary} and \textit{V. Srivastava}, Appl. Anal. 101, No. 2, 479--496 (2022; Zbl 1491.65090) Full Text: DOI
Alakoya, T. O.; Mewomo, O. T. Viscosity \(S\)-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems. (English) Zbl 1499.65251 Comput. Appl. Math. 41, No. 1, Paper No. 39, 31 p. (2022). MSC: 65K15 47J25 65J15 90C33 PDF BibTeX XML Cite \textit{T. O. Alakoya} and \textit{O. T. Mewomo}, Comput. Appl. Math. 41, No. 1, Paper No. 39, 31 p. (2022; Zbl 1499.65251) Full Text: DOI
Li, Dong-Kai; Wang, Li; Liu, Yu-Ying A relaxation general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. (English) Zbl 1486.90198 J. Comput. Appl. Math. 409, Article ID 114140, 20 p. (2022). MSC: 90C33 65K05 65F10 PDF BibTeX XML Cite \textit{D.-K. Li} et al., J. Comput. Appl. Math. 409, Article ID 114140, 20 p. (2022; Zbl 1486.90198) Full Text: DOI arXiv
Rehman, Gohar; Qin, Shengwu; Ain, Qura Tul; Ullah, Zaheen; Zaheer, Muhammad; Talib, Muhammad Afnan; Mehmood, Qaiser; Baloch, Muhammad Yousuf Jat; ur Rahman, Naveed A study of moisture content in unsaturated porous medium by using homotopy perturbation method (HPM) and variational iteration method (VIM). (English) Zbl 1484.76077 GEM. Int. J. Geomath. 13, Paper No. 3, 10 p. (2022). MSC: 76S05 76M30 76M45 86A05 PDF BibTeX XML Cite \textit{G. Rehman} et al., GEM. Int. J. Geomath. 13, Paper No. 3, 10 p. (2022; Zbl 1484.76077) Full Text: DOI
Yan, Gui-Lin; Wu, Yu-Jiang; Yang, Ai-Li; Jomah, Sulieman A. S. Two-step modulus-based synchronous multisplitting iteration methods for nonlinear complementarity problems. (English) Zbl 1482.65091 East Asian J. Appl. Math. 12, No. 2, 449-469 (2022). MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{G.-L. Yan} et al., East Asian J. Appl. Math. 12, No. 2, 449--469 (2022; Zbl 1482.65091) Full Text: DOI
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link
Fernández, Francisco M. Comment on “He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics”. (English) Zbl 1482.35004 J. Math. Chem. 60, No. 1, 255-259 (2022). MSC: 35A15 35A22 35C10 35K57 44A10 49K20 92E20 PDF BibTeX XML Cite \textit{F. M. Fernández}, J. Math. Chem. 60, No. 1, 255--259 (2022; Zbl 1482.35004) Full Text: DOI
Zhang, Jia-Lin; Zhang, Guo-Feng; Liang, Zhao-Zheng A preconditioned general two-step modulus-based accelerated overrelaxation iteration method for nonlinear complementarity problems. (English) Zbl 1480.65078 Japan J. Ind. Appl. Math. 39, No. 1, 227-255 (2022). MSC: 65F10 65F08 65F50 65K05 90C33 PDF BibTeX XML Cite \textit{J.-L. Zhang} et al., Japan J. Ind. Appl. Math. 39, No. 1, 227--255 (2022; Zbl 1480.65078) Full Text: DOI
Jena, S.; Pattnaik, P. K.; Shekhawat, Kishan Singh; Sharma, Ram Parkash An investigation on non-Darcy nano fluid flow due to the interaction of inclined magnetic field and nonlinear radiation. (English) Zbl 07683904 Gaṇita 71, No. 1, 215-220 (2021). MSC: 76S05 76T20 76W05 76R10 76M99 80A21 PDF BibTeX XML Cite \textit{S. Jena} et al., Gaṇita 71, No. 1, 215--220 (2021; Zbl 07683904) Full Text: Link
Ding, Jian; Yin, Junfeng The relaxation two-sweep modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems. (Chinese. English summary) Zbl 1513.65148 Math. Numer. Sin. 43, No. 1, 118-132 (2021). MSC: 65H10 65K15 PDF BibTeX XML Cite \textit{J. Ding} and \textit{J. Yin}, Math. Numer. Sin. 43, No. 1, 118--132 (2021; Zbl 1513.65148) Full Text: DOI
Batiha, Belal; Ghanim, Firas Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation. (English) Zbl 1491.65074 Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21-29 (2021). MSC: 65L99 PDF BibTeX XML Cite \textit{B. Batiha} and \textit{F. Ghanim}, Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21--29 (2021; Zbl 1491.65074) Full Text: Link
Chu, Yu-Ming; Ali Shah, Nehad; Agarwal, Praveen; Dong Chung, Jae Analysis of fractional multi-dimensional Navier-Stokes equation. (English) Zbl 1487.76055 Adv. Difference Equ. 2021, Paper No. 91, 19 p. (2021). MSC: 76M20 35R11 35Q30 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Adv. Difference Equ. 2021, Paper No. 91, 19 p. (2021; Zbl 1487.76055) Full Text: DOI
Fang, Ximing; Fu, Shouzhong; Gu, Ze On the convergence of two-step modulus-based matrix splitting iteration method. (English) Zbl 1485.65060 Open Math. 19, 1461-1475 (2021). MSC: 65K05 90C33 PDF BibTeX XML Cite \textit{X. Fang} et al., Open Math. 19, 1461--1475 (2021; Zbl 1485.65060) Full Text: DOI
Gao, Liu; Chen, Chunfang; Chen, Jianhua; Zhu, Chuanxi Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian and local nonlinearity. (English) Zbl 1484.35376 AIMS Math. 6, No. 2, 1332-1347 (2021). MSC: 35R11 35J60 35J20 PDF BibTeX XML Cite \textit{L. Gao} et al., AIMS Math. 6, No. 2, 1332--1347 (2021; Zbl 1484.35376) Full Text: DOI
Xu, Hong-Kun; Sahu, D. R. Parallel normal \(S\)-iteration methods with applications to optimization problems. (English) Zbl 07505478 Numer. Funct. Anal. Optim. 42, No. 16, Part 4, 1925-1953 (2021). MSC: 47J05 47H09 65K05 65K10 PDF BibTeX XML Cite \textit{H.-K. Xu} and \textit{D. R. Sahu}, Numer. Funct. Anal. Optim. 42, No. 16, Part 4, 1925--1953 (2021; Zbl 07505478) Full Text: DOI
Lashkarboluki, Amirreza; Hosseini, Hamed; Ganji, Davood Dimiri Investigating the solutions of two classical nonlinear oscillators by the AG method. (English) Zbl 1506.70030 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 110, 28 p. (2021). MSC: 70K60 70-08 PDF BibTeX XML Cite \textit{A. Lashkarboluki} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 110, 28 p. (2021; Zbl 1506.70030) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Some powerful techniques for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 1492.65360 J. Appl. Nonlinear Dyn. 10, No. 3, 461-469 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Appl. Nonlinear Dyn. 10, No. 3, 461--469 (2021; Zbl 1492.65360) Full Text: DOI
Mustafa, Altyeb Mohammed; Gong, Zengtai; Osman, Mawia The solution of fuzzy variational problem and fuzzy optimal control problem under granular differentiability concept. (English) Zbl 1483.49036 Int. J. Comput. Math. 98, No. 8, 1495-1520 (2021). MSC: 49K99 49M99 PDF BibTeX XML Cite \textit{A. M. Mustafa} et al., Int. J. Comput. Math. 98, No. 8, 1495--1520 (2021; Zbl 1483.49036) Full Text: DOI
Ziane, Djelloul; Hamdi, Cherif Mountassir; Belghaba, Kacem; Belgacem, Fethi Bin Muhammad An accurate method for nonlinear local fractional wave-like equations with variable coefficients. (English) Zbl 1499.44005 Comput. Methods Differ. Equ. 9, No. 3, 774-787 (2021). MSC: 44A05 26A33 44A20 34K37 PDF BibTeX XML Cite \textit{D. Ziane} et al., Comput. Methods Differ. Equ. 9, No. 3, 774--787 (2021; Zbl 1499.44005) Full Text: DOI
Torabi, Giklou Asadollah; Ranjbar, Mojtaba; Shafiee, Mahmoud; Roomi, Vahid VIM-Padé technique for solving nonlinear and delay initial value problems. (English) Zbl 1490.65138 Comput. Methods Differ. Equ. 9, No. 3, 749-761 (2021). MSC: 65L05 41A21 PDF BibTeX XML Cite \textit{G. A. Torabi} et al., Comput. Methods Differ. Equ. 9, No. 3, 749--761 (2021; Zbl 1490.65138) Full Text: DOI
Wei, Chunfu A new analytical modeling for fractal Blasius equation in microgravity space. (English) Zbl 1491.34045 Fractals 29, No. 7, Article ID 2150190, 6 p. (2021). MSC: 34B30 34A08 34B15 34A45 58E50 PDF BibTeX XML Cite \textit{C. Wei}, Fractals 29, No. 7, Article ID 2150190, 6 p. (2021; Zbl 1491.34045) Full Text: DOI
Wang, Kang-Le; Wei, Chun-Fu New analytical approach for nonlinear fractal \(K(p,q)\) model. (English) Zbl 07465637 Fractals 29, No. 5, Article ID 2150116, 7 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{K.-L. Wang} and \textit{C.-F. Wei}, Fractals 29, No. 5, Article ID 2150116, 7 p. (2021; Zbl 07465637) Full Text: DOI
Jafari, Hossein; Jassim, Hassan Kamil; Baleanu, Dumitru; Chu, Yu-Ming On the approximate solutions for a system of coupled Korteweg-de Vries equations with local fractional derivative. (English) Zbl 07465612 Fractals 29, No. 5, Article ID 2140012, 7 p. (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{H. Jafari} et al., Fractals 29, No. 5, Article ID 2140012, 7 p. (2021; Zbl 07465612) Full Text: DOI
Wang, Kang-Le A novel perspective for the fractal Schrödinger equation. (English) Zbl 1482.35011 Fractals 29, No. 4, Article ID 2150093, 11 p. (2021). MSC: 35A15 35Q55 35R11 PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 29, No. 4, Article ID 2150093, 11 p. (2021; Zbl 1482.35011) Full Text: DOI
Wang, Kang-Jia; Wang, Guo-Dong Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics. (English) Zbl 1482.35009 Fractals 29, No. 3, Article ID 2150075, 8 p. (2021). MSC: 35A15 35A22 35Q35 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{G.-D. Wang}, Fractals 29, No. 3, Article ID 2150075, 8 p. (2021; Zbl 1482.35009) Full Text: DOI
Wang, Kang-Le A novel approach for fractal Burgers-BBM equation and its variational principle. (English) Zbl 1482.35010 Fractals 29, No. 3, Article ID 2150059, 8 p. (2021). MSC: 35A15 35A22 35K58 35R11 PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 29, No. 3, Article ID 2150059, 8 p. (2021; Zbl 1482.35010) Full Text: DOI
Wang, Kang-Jia Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative. (English) Zbl 1482.35008 Fractals 29, No. 2, Article ID 2150044, 6 p. (2021). MSC: 35A15 35K58 35R11 PDF BibTeX XML Cite \textit{K.-J. Wang}, Fractals 29, No. 2, Article ID 2150044, 6 p. (2021; Zbl 1482.35008) Full Text: DOI
Pollock, Sara; Rebholz, Leo G.; Xiao, Mengying Acceleration of nonlinear solvers for natural convection problems. (English) Zbl 1495.65174 J. Numer. Math. 29, No. 4, 323-341 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M60 65M22 65N30 65B05 65K10 65H10 76D05 76R10 PDF BibTeX XML Cite \textit{S. Pollock} et al., J. Numer. Math. 29, No. 4, 323--341 (2021; Zbl 1495.65174) Full Text: DOI arXiv
Ain, Qura Tul; Anjum, Naveed; He, Chun-Hui An analysis of time-fractional heat transfer problem using two-scale approach. (English) Zbl 1480.35386 GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021). MSC: 35R11 35A25 35K15 PDF BibTeX XML Cite \textit{Q. T. Ain} et al., GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021; Zbl 1480.35386) Full Text: DOI
Svaiter, B. Fux A partially inexact ADMM with \(o(1/n)\) asymptotic convergence rate, \(\mathcal{O} (1/n)\) complexity, and immediate relative error tolerance. (English) Zbl 07432194 Optimization 70, No. 10, 2061-2080 (2021). MSC: 47H05 49M27 65K05 65K10 65G99 90C25 90C60 PDF BibTeX XML Cite \textit{B. F. Svaiter}, Optimization 70, No. 10, 2061--2080 (2021; Zbl 07432194) Full Text: DOI
Chen, Fang; Zhu, Yu; Muratova, Galina V. Two-step modulus-based matrix splitting iteration methods for retinex problem. (English) Zbl 1512.65110 Numer. Algorithms 88, No. 4, 1989-2005 (2021). MSC: 65K15 78M30 PDF BibTeX XML Cite \textit{F. Chen} et al., Numer. Algorithms 88, No. 4, 1989--2005 (2021; Zbl 1512.65110) Full Text: DOI
Entesar, Ahmed; Qasim, Omar Saber Solve fractional differential equations via a hybrid method between variational iteration method and gray wolf optimization algorithm. (English) Zbl 07425651 Asian-Eur. J. Math. 14, No. 8, Article ID 2150144, 9 p. (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{A. Entesar} and \textit{O. S. Qasim}, Asian-Eur. J. Math. 14, No. 8, Article ID 2150144, 9 p. (2021; Zbl 07425651) Full Text: DOI
Mungkasi, Sudi Variational iteration and successive approximation methods for a SIR epidemic model with constant vaccination strategy. (English) Zbl 1481.92152 Appl. Math. Modelling 90, 1-10 (2021). MSC: 92D30 65L99 PDF BibTeX XML Cite \textit{S. Mungkasi}, Appl. Math. Modelling 90, 1--10 (2021; Zbl 1481.92152) Full Text: DOI
Kong, Weiwei; Monteiro, Renato D. C. An accelerated inexact proximal point method for solving nonconvex-concave min-max problems. (English) Zbl 07421056 SIAM J. Optim. 31, No. 4, 2558-2585 (2021). MSC: 47J22 90C26 90C30 90C47 90C60 65K10 PDF BibTeX XML Cite \textit{W. Kong} and \textit{R. D. C. Monteiro}, SIAM J. Optim. 31, No. 4, 2558--2585 (2021; Zbl 07421056) Full Text: DOI arXiv
Zhang, Limin; Tang, Xianhua; Chen, Sitong Multiple solutions for fractional Kirchhoff equation with critical or supercritical nonlinearity. (English) Zbl 1479.35401 Appl. Math. Lett. 119, Article ID 107204, 7 p. (2021). MSC: 35J60 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{L. Zhang} et al., Appl. Math. Lett. 119, Article ID 107204, 7 p. (2021; Zbl 1479.35401) Full Text: DOI
Zheng, Hua; Luo, Liang; Li, Shao-Yong A two-step iteration method for the horizontal nonlinear complementarity problem. (English) Zbl 1483.65058 Japan J. Ind. Appl. Math. 38, No. 3, 1023-1036 (2021). MSC: 65F10 90C33 PDF BibTeX XML Cite \textit{H. Zheng} et al., Japan J. Ind. Appl. Math. 38, No. 3, 1023--1036 (2021; Zbl 1483.65058) Full Text: DOI
Jia, Honggang; Nie, Yufeng; Zhao, Yanmin Approximate solution of time fractional Fisher nonlinear population diffusion model. (Chinese. English summary) Zbl 1488.35562 Math. Appl. 34, No. 3, 536-542 (2021). MSC: 35R11 35K57 92D25 PDF BibTeX XML Cite \textit{H. Jia} et al., Math. Appl. 34, No. 3, 536--542 (2021; Zbl 1488.35562)
Jia, Honggang; Zhao, Yanmin; Nie, Yufeng Approximate solution of time fractional Fisher nonlinear population diffusion model. (Chinese. English summary) Zbl 1488.35563 J. Northwest Norm. Univ., Nat. Sci. 57, No. 2, 5-8, 14 (2021). MSC: 35R11 92D25 PDF BibTeX XML Cite \textit{H. Jia} et al., J. Northwest Norm. Univ., Nat. Sci. 57, No. 2, 5--8, 14 (2021; Zbl 1488.35563) Full Text: DOI
Huang, Zheng-Ge; Cui, Jing-Jing Accelerated relaxation modulus-based matrix splitting iteration method for linear complementarity problems. (English) Zbl 1472.65038 Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2175-2213 (2021). MSC: 65F10 65K15 PDF BibTeX XML Cite \textit{Z.-G. Huang} and \textit{J.-J. Cui}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2175--2213 (2021; Zbl 1472.65038) Full Text: DOI
Goyal, Manish; Bhardwaj, Vinod Kumar; Prakash, Amit Investigating new positive, bounded, and convergent numerical solution for the nonlinear time-dependent breast cancer dynamic competition model. (English) Zbl 1512.92033 Math. Methods Appl. Sci. 44, No. 6, 4636-4653 (2021). MSC: 92C50 34A08 65L05 92-08 PDF BibTeX XML Cite \textit{M. Goyal} et al., Math. Methods Appl. Sci. 44, No. 6, 4636--4653 (2021; Zbl 1512.92033) Full Text: DOI
Alipour, Maryam; Vali, Mohammad Ali Approximate optimal control of Volterra-Fredholm integral equations based on parametrization and variational iteration method. (English) Zbl 1467.49006 Math. Commun. 26, No. 1, 107-119 (2021). MSC: 49J21 45B05 65R20 PDF BibTeX XML Cite \textit{M. Alipour} and \textit{M. A. Vali}, Math. Commun. 26, No. 1, 107--119 (2021; Zbl 1467.49006) Full Text: Link
Xu, Yongjun A novel numerical-analytical approach using FIPIM for critical eigenvalue investigation meanwhile solving the corresponding Bratu’s problem. (English) Zbl 1469.65129 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 10, 12 p. (2021). MSC: 65L10 PDF BibTeX XML Cite \textit{Y. Xu}, Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 10, 12 p. (2021; Zbl 1469.65129) Full Text: DOI
Nadeem, Muhammad; He, Ji-Huan He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics. (English) Zbl 1472.35009 J. Math. Chem. 59, No. 5, 1234-1245 (2021). MSC: 35A15 35A22 35K57 44A10 49K20 92E20 PDF BibTeX XML Cite \textit{M. Nadeem} and \textit{J.-H. He}, J. Math. Chem. 59, No. 5, 1234--1245 (2021; Zbl 1472.35009) Full Text: DOI
Ghorbani, Asghar; Wazwaz, Abdul-Majid A multiple variational iteration method for nonlinear two-point boundary value problems with nonlinear conditions. (English) Zbl 07342027 Int. J. Comput. Methods 18, No. 1, Article ID 2050028, 10 p. (2021). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{A. Ghorbani} and \textit{A.-M. Wazwaz}, Int. J. Comput. Methods 18, No. 1, Article ID 2050028, 10 p. (2021; Zbl 07342027) Full Text: DOI
Hosseini, Alireza An efficient numerical method based on variational iteration method for solving the Kuramoto-Sivashinsky equations. (English) Zbl 1474.35104 Bol. Soc. Parana. Mat. (3) 39, No. 4, 143-152 (2021). MSC: 35B40 35L70 PDF BibTeX XML Cite \textit{A. Hosseini}, Bol. Soc. Parana. Mat. (3) 39, No. 4, 143--152 (2021; Zbl 1474.35104) Full Text: Link
Ziane, D.; Hamdi Cherif, M. A new analytical solution of Klein-Gordon equation with local fractional derivative. (English) Zbl 1462.35452 Asian-Eur. J. Math. 14, No. 3, Article ID 2150029, 13 p. (2021). MSC: 35R11 35A22 26A33 33E12 65L10 PDF BibTeX XML Cite \textit{D. Ziane} and \textit{M. Hamdi Cherif}, Asian-Eur. J. Math. 14, No. 3, Article ID 2150029, 13 p. (2021; Zbl 1462.35452) Full Text: DOI
Benkhira, El-Hassan; Fakhar, Rachid; Mandyly, Youssef A convergence result and numerical study for a nonlinear piezoelectric material in a frictional contact process with a conductive foundation. (English) Zbl 07332691 Appl. Math., Praha 66, No. 1, 87-113 (2021). MSC: 35J87 74C05 49J40 47J25 74S05 65N55 37M05 PDF BibTeX XML Cite \textit{E.-H. Benkhira} et al., Appl. Math., Praha 66, No. 1, 87--113 (2021; Zbl 07332691) Full Text: DOI
Taiwo, Adeolu; Alakoya, Timilehin Opeyemi; Mewomo, Oluwatosin Temitope Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. (English) Zbl 07331334 Numer. Algorithms 86, No. 4, 1359-1389 (2021). MSC: 47H10 47J22 47J25 65J15 PDF BibTeX XML Cite \textit{A. Taiwo} et al., Numer. Algorithms 86, No. 4, 1359--1389 (2021; Zbl 07331334) Full Text: DOI
Ke, Yifen The matrix splitting iteration method for nonlinear complementarity problems associated with second-order cone. (English) Zbl 1461.65197 Bull. Iran. Math. Soc. 47, No. 1, 31-53 (2021). MSC: 65K15 90C33 PDF BibTeX XML Cite \textit{Y. Ke}, Bull. Iran. Math. Soc. 47, No. 1, 31--53 (2021; Zbl 1461.65197) Full Text: DOI
Sun, Li; Huang, Yu-Mei A modulus-based multigrid method for image retinex. (English) Zbl 1461.90155 Appl. Numer. Math. 164, 199-210 (2021). MSC: 90C33 90C90 PDF BibTeX XML Cite \textit{L. Sun} and \textit{Y.-M. Huang}, Appl. Numer. Math. 164, 199--210 (2021; Zbl 1461.90155) Full Text: DOI
Vaish, Rajat; Ahmad, Md. Kalimuddin Hybrid viscosity implicit scheme for variational inequalities over the fixed point set of an asymptotically nonexpansive mapping in the intermediate sense in Banach spaces. (English) Zbl 1461.47037 Appl. Numer. Math. 160, 296-312 (2021). MSC: 47J25 47J22 47H09 PDF BibTeX XML Cite \textit{R. Vaish} and \textit{Md. K. Ahmad}, Appl. Numer. Math. 160, 296--312 (2021; Zbl 1461.47037) Full Text: DOI
Ding, Ming-Hui; Zheng, Guang-Hui Determination of the reaction coefficient in a time dependent nonlocal diffusion process. (English) Zbl 1456.65092 Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021). MSC: 65M32 65M30 65M06 35B65 35A02 44A10 76M30 76M21 35Q35 62F15 PDF BibTeX XML Cite \textit{M.-H. Ding} and \textit{G.-H. Zheng}, Inverse Probl. 37, No. 2, Article ID 025005, 28 p. (2021; Zbl 1456.65092) Full Text: DOI
Long, Haie; Han, Bo; Li, Li A fast two-point gradient method for solving non-smooth nonlinear ill-posed problems. (English) Zbl 1456.65147 J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021). MSC: 65N21 65N20 65K10 65N12 65B99 65J20 35J61 PDF BibTeX XML Cite \textit{H. Long} et al., J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021; Zbl 1456.65147) Full Text: DOI
Suzuki, Takashi Semilinear elliptic equations. Classical and modern theories. (English) Zbl 1472.35006 De Gruyter Series in Nonlinear Analysis and Applications 35. Berlin: De Gruyter (ISBN 978-3-11-055535-6/hbk; 978-3-11-055628-5/ebook). xvii, 470 p. (2020). Reviewer: Petr Tomiczek (Plzeň) MSC: 35-02 35J61 35J91 35J20 35B50 35A16 35B33 PDF BibTeX XML Cite \textit{T. Suzuki}, Semilinear elliptic equations. Classical and modern theories. Berlin: De Gruyter (2021; Zbl 1472.35006) Full Text: DOI