×

The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution. (English. Russian original) Zbl 1253.53045

Vestn. St. Petersbg. Univ., Math. 41, No. 3, 256-265 (2008); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 2008, No. 3, 68-80 (2008).
Summary: The space of possible particle velocities is a four-dimensional nonholonomic distribution on a manifold of higher dimension, say, \(M^4 \times \mathbb{R}^1\). This distribution is determined by the 4-potential of the electromagnetic field. The equations of admissible (horizontal) geodesics for this distribution are the same as those of the motion of a charged particle in general relativity theory. On the distribution, a metric tensor with Lorentzian signature \((+, -, -, -)\) is defined, which gives rise to the causal structure, as in general relativity theory. Covariant differentiation (a linear connection) and the curvature tensor for this distribution are introduced. The Einstein equations are obtained from the variational principle for the scalar curvature of the distribution. It is proved that the Dirac operator for the four-dimensional distribution can be extended to functions defined on the manifold \(M^4 \times S^1\), where \(S^1\) is the circle. For such functions, electric charges are topologically quantized.

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
58A30 Vector distributions (subbundles of the tangent bundles)
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V. R. Krym, Teor. Mat. Fiz. 119(3), 517–528 (1999). · doi:10.4213/tmf755
[2] V. R. Krym and N. N. Petrov, Vestn. S.-Peterburg. Univ., Mat. Mekh. Astron., No. 1, 62–70 (2007) [Vestn. St. Petersburg Univ.: Math. 40 (1), 62–70 (2007)].
[3] L. Smolin, The Trouble with Physics (Houghton Mifflin, Boston, Mass., 2006).
[4] T. I. Kaluza, Sitzungsber. Preuss. Akad., pp. 966–972 (1921).
[5] O. Klein Z. Phys. 37, 895–906 (1926). · JFM 52.0970.09 · doi:10.1007/BF01397481
[6] A. Einstein and P. Bergmann, Ann. Math. 39, 683–701 (1938). · Zbl 0019.28700 · doi:10.2307/1968642
[7] D. Bailin and A. Love, Rep. Progr. Phys. 50, 1087–1170 (1987). · doi:10.1088/0034-4885/50/9/001
[8] S. K. Srivastava, Pramana J. Phys. 49(4), 323–370 (1997). · doi:10.1007/BF02847423
[9] Yu. B. Rumer, Research on 5-Optics (Gostekhizdat, Moscow, 1956).
[10] G. Vranceanu, J. Phys. 7, 514–526 (1936).
[11] W.-M. Yao et al., J. Phys. G: Nucl. Part. Phys. 33(1), (2006).
[12] V. R. Krym, Zap. Nauchn. Sem. POMI 246, 152–173 (1997).
[13] V. R. Krym, Teor. Mat. Fiz. 119(2), 264–281 (1999). · doi:10.4213/tmf738
[14] V. R. Krym and N. N. Petrov, Vestn. S.-Peterburg. Univ., Mat. Mekh. Astron. 2(9), 27–34 (2001).
[15] V. R. Krym and N. N. Petrov, Vestn. S.-Peterburg. Univ., Mat. Mekh. Astron. 3(17), 32–36 (2001).
[16] E. M. Gorbatenko, Geom. Sb. Tomsk. Univ. 26, 31–43 (1985).
[17] R. I. Pimenov, An Anisotropic Finsler Generalization of Relativity Theory as an Order Structure (LENAND, Moscow, 2006) [in Russian].
[18] M. Gromov, Preprint IHES/M/94/6 (Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, 1994).
[19] A. M. Vershik and V. Ya. Gershkovich, Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat. Fundam. Napravleniya 16, 5–85 (1987).
[20] Ph. A. Griffiths, Exterior Differential Systems and the Calculus of Variations (Birkhäuser, Basel, 1983; Mir, Moscow, 1986).
[21] J. Beem and P. Ehrlich, Global Lorentzian Geometry (Marcel Dekker, New York, 1981; Mir, Moscow, 1985). · Zbl 0462.53001
[22] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic, New York, 1983).
[23] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Nauka, Moscow, 1983) [in Russian].
[24] V. F. Krotov and V. I. Gurman, Methods and Problems of Optimal Control (Nauka, Moscow, 1973) [in Russian].
[25] F. P. Vasil’ev, Numerical Methods for Solving Extremal Problems (Nauka, Moscow, 1988) [in Russian].
[26] E. Minguzzi, Class. Quant. Grav. 20, 4169–4175 (2003). · Zbl 1048.83005 · doi:10.1088/0264-9381/20/19/303
[27] E. Minguzzi, in Proceedings of the 9th International Conference on Differential Geometry and Its Applications, Prague, Czech Republic, 2004 (Prague, 2004).
[28] Yu. D. Burago and V. A. Zalgaller, An Introduction to Riemannian Geometry (Nauka, St. Petersburg, 1994) [in Russian]. · Zbl 0814.53001
[29] L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol.2: Field Theory (Fizmatlit, Moscow, 1988) [in Russian]. · Zbl 0659.70001
[30] C. G. Gray, G. Karl, and V. A. Novikov, Rep. Progr. Phys. 67(2), 159–208 (2004). · doi:10.1088/0034-4885/67/2/R02
[31] Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973).
[32] S. W. Hawking and G. F. Ellis, The Large Scale Structure of Space-Time (Cambridge Univ. Press, Cambridge, 1973; Moscow, Mir, 1977) · Zbl 0265.53054
[33] P. A. M. Dirac, Proc. Roy. Soc. A 133, 60–72 (1931). · Zbl 0002.30502 · doi:10.1098/rspa.1931.0130
[34] G. Giacomelli and L. Patrizii, in Summer School on Astroparticle Physics and Cosmology ICTP, Trieste, Italy, 2002 (Trieste, 2002).
[35] K. A. Milton, Rep. Progr. Phys. 69, 1637–1712 (2006). · doi:10.1088/0034-4885/69/6/R02
[36] Y. Aharonov and D. Bohm, Phys. Rev. Ser. 2 115(3), 485–491 (1959).
[37] M. J. Esteban, V. Georgiev, and E. Séré, Preprint IC/95/68 (Int. Centre for Theoretical Physics, Miramare-Trieste).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.