×

A 6-node co-rotational triangular elasto-plastic shell element. (English) Zbl 1329.74181

Summary: A 6-node co-rotational triangular elasto-plastic shell element is developed. The local coordinate system of the element is defined by the vectors directing from one vertex to the other two vertices and their cross product. Based on such a co-rotational framework, the element rigid-body rotations are excluded in calculating the local nodal variables from the global nodal variables. The two smallest components of each nodal orientation vector are defined as rotational variables, resulting in the desired additive property for all nodal variables in a nonlinear incremental solution procedure. Different from other existing co-rotational finite element formulations, both the element tangent stiffness matrices in the local and in the global coordinate systems are symmetric owing to the commutativity of the nodal variables in calculating the second derivatives of the strain energy with respect to the local nodal variables and, through chain differentiation, with respect to the global nodal variables. For elasto-plastic analysis, the Maxwell-Huber-Hencky-von Mises yield criterion is employed together with the backward-Euler return-mapping method for the evaluation of the elasto-plastic stress state, where a consistent tangent modulus matrix is employed. To overcome locking problems, the assumed linear membrane strains and shear strains are obtained by using the line integration method proposed by MacNeal, and the assumed higher-order membrane strains are obtained by enforcing the stationarity of the mixed displacement-strain canonical functional, these assumed strains are then employed to replace the corresponding conforming strains. The reliability and convergence of the present 6-node triangular shell element formulation are verified through two elastic plate patch tests as well as two elastic and five elasto-plastic plate/shell problems undergoing large displacements and large rotations.

MSC:

74K25 Shells
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Lee PS, Noh HC, Bathe KJ (2007) Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns. Comput Struct 85(7-8):404-418. doi:10.1016/j.compstruc.2006.10.006 · doi:10.1016/j.compstruc.2006.10.006
[2] Chapelle D, Suarez IP (2008) Detailed reliability assessment of triangular MITC elements for thin shells. Comput Struct 86(23-24):2192-2202. doi:10.1016/j.compstruc.2008.06.001 · doi:10.1016/j.compstruc.2008.06.001
[3] Kamoulakos A (1988) Understanding and improving the reduced integration of Mindlin shell elements. Int J Numer Methods Eng 26(9):2009-2029. doi:10.1002/nme.1620260908 · Zbl 0662.73047 · doi:10.1002/nme.1620260908
[4] Vu-Quoc L, Mora JA (1989) A class of simple and efficient degenerated shell elements—analysis of global spurious-mode filtering. Comput Methods Appl Mech Eng 74(2):117-175. doi:10.1016/0045-7825(89)90101-1 · Zbl 0687.73071 · doi:10.1016/0045-7825(89)90101-1
[5] Vu-Quoc L (1990) A perturbation method for dynamic analyses using under-integrated shell elements. Comput Methods Appl Mech Eng 79(2):129-172. doi:10.1016/0045-7825(90)90130-E · Zbl 0743.73018 · doi:10.1016/0045-7825(90)90130-E
[6] Vu-Quoc L, Hoff C (1992) On a highly robust spurious-mode filtering method for uniformly reduced-integrated shell elements. Int J Numer Methods Eng 34(1):209-220. doi:10.1002/nme.1620340113 · doi:10.1002/nme.1620340113
[7] Arnold DN, Brezzi F (1997) Partial selective reduced integration method and applications to shell problems. Comput Struct 64(1-4):879-880. doi:10.1016/S0045-7949(96)00151-4 · doi:10.1016/S0045-7949(96)00151-4
[8] Liu WK, Belytschko T, Ong JSJ, Law SE (1985) Use of stabilization matrices in non-linear analysis. Eng Comput 2(1):47-55. doi:10.1108/eb023600 · doi:10.1108/eb023600
[9] To CWS, Wang B (1999) Hybrid strain based geometrically nonlinear laminated composite triangular shell finite elements. Finite Elem Anal Des 33(2):83-124. doi:10.1016/S0168-874X(99)00028-1 · Zbl 0954.74074 · doi:10.1016/S0168-874X(99)00028-1
[10] Cho M, Roh HY (2003) Development of geometrically exact new shell elements based on general curvilinear co-ordinates. Int J Numer Methods Eng 56(1):81-115. doi:10.1002/nme.546 · Zbl 1026.74070 · doi:10.1002/nme.546
[11] Roh HY, Cho M (2004) The application of geometrically exact shell elements to B-spline surfaces. Comput Methods Appl Mech Eng 193(23-26):2261-2299. doi:10.1016/j.cma.2004.01.019 · Zbl 1067.74585 · doi:10.1016/j.cma.2004.01.019
[12] Bathe KJ, Iosilevich A, Chapelle D (2000) Evaluation of the MITC shell elements. Comput Struct 75(1):1-30. doi:10.1016/S0045-7949(99)00214-X · doi:10.1016/S0045-7949(99)00214-X
[13] Chapelle D, Oliveira DL, Bucalem ML (2003) MITC elements for a classical shell model. Comput Struct 81(8-11):523-533. doi:10.1016/S0045-7949(02)00408-X · doi:10.1016/S0045-7949(02)00408-X
[14] Lee PS, Bathe KJ (2004) Development of MITC isotropic triangular shell finite elements. Comput Struct 82(11-12):945-962. doi:10.1016/j.compstruc.2004.02.004 · doi:10.1016/j.compstruc.2004.02.004
[15] Barlow J (1976) Optimal stress locations in finite element models. Int J Numer Methods Eng 10(2):243-251. doi:10.1002/nme.1620100202 · Zbl 0322.73049 · doi:10.1002/nme.1620100202
[16] Irons B, Ahmad S (1980) Techniques of finite elements. Wiley, New York
[17] MacNeal RH (1982) Derivation of element stiffness matrices by assumed strain distribution. Nucl Eng Des 70(1):3-12. doi:10.1016/0029-5493(82)90262-X · doi:10.1016/0029-5493(82)90262-X
[18] Izzuddin BA (2006) Co-rotational system definitions for large displacement triangular and quadrilateral shell elements. In: III European conference on computational mechanics: solids, structures and coupled problems in engineering, Lisbon, Portugal. Springer, Dordrecht, p 656 · Zbl 0987.74001
[19] Li ZX, Vu-Quoc L (2007) An efficient co-rotational formulation for curved triangular shell element. Int J Numer Methods Eng 72(9):1029-1062. doi:10.1002/nme.2064 · Zbl 1194.74428 · doi:10.1002/nme.2064
[20] Li ZX, Izzuddin BA, Vu-Quoc L (2008) A 9-node co-rotational quadrilateral shell element. Comput Mech 42(6):873-884. doi:10.1007/s00466-008-0289-8 · Zbl 1163.74553 · doi:10.1007/s00466-008-0289-8
[21] da Veiga LB, Chapelle D, Suarez IP (2007) Towards improving the MITC6 triangular shell element. Comput Struct 85(21-22):1589-1610. doi:10.1016/j.compstruc.2007.03.003 · doi:10.1016/j.compstruc.2007.03.003
[22] Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505-518. doi:10.1007/s00466-003-0458-6 · Zbl 1038.74628 · doi:10.1007/s00466-003-0458-6
[23] Wenzel T, Schoop H (2004) A non-linear triangular curved shell element. Commun Numer Methods Eng 20(4):251-264. doi:10.1002/cnm.665 · Zbl 1280.74025 · doi:10.1002/cnm.665
[24] Bucalem ML, Shimura N, Selma H (2000) A mixed formulation for general triangular isoparametric shell elements based on the degenerated solid approach. Comput Struct 78(1-3):35-44. doi:10.1016/S0045-7949(00)00077-8 · doi:10.1016/S0045-7949(00)00077-8
[25] Laulusa A, Bauchau OA, Choi JY, Tan VBC, Li L (2006) Evaluation of some shear deformable shell elements. Int J Solids Struct 43(17):5033-5054. doi:10.1016/j.ijsolstr.2005.08.006 · Zbl 1120.74821 · doi:10.1016/j.ijsolstr.2005.08.006
[26] Kim DN, Bathe KJ (2009) A triangular six-node shell element. Comput Struct 87(23-24):1451-1460. doi:10.1016/j.compstruc.2009.05.002 · doi:10.1016/j.compstruc.2009.05.002
[27] El-Metwally SE, El-Shahhat AM, Chen WF (1990) 3-D nonlinear-analysis of R/C slender columns. Comput Struct 37(5):863-872. doi:10.1016/0045-7949(90)90114-H · doi:10.1016/0045-7949(90)90114-H
[28] Izzuddin BA, Elnashai AS (1993) Adaptive space frame analysis. 2. A distributed plasticity approach. Proc Inst Civil Eng 99(3):317-326. doi:10.1680/istbu.1993.24353 · doi:10.1680/istbu.1993.24353
[29] Spacone E, Filippou FC, Taucer FF (1996) Fibre beam-column model for non-linear analysis of R/C frames. 1. Formulation. Earthq Eng Struct Dyn 25(7):711-725. doi:10.1002/(SICI)1096-9845(199607)25:7 · doi:10.1002/(SICI)1096-9845(199607)25:7
[30] Izzuddin BA, Lloyd Smith D (1996) Large-displacement analysis of elastoplastic thin-walled frames. 1. Formulation and implementation. J Struct Eng 122(8):905-914. doi:10.1061/(ASCE)0733-9445(1996)122:8(905) · doi:10.1061/(ASCE)0733-9445(1996)122:8(905)
[31] Crisfield MA (1991) Nonlinear finite element analysis of solid and structures. Essentials, vol 1. Wiley, Chichester
[32] Becker M, Hackenberg HP (2011) A constitutive model for rate dependent and rate independent inelasticity. Application to IN718. Int J Plasticity 27(4):596-619. doi:10.1016/j.ijplas.2010.08.005 · Zbl 1426.74055 · doi:10.1016/j.ijplas.2010.08.005
[33] Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York · Zbl 0934.74003
[34] Khan AS, Huang SJ (1995) Continuum theory of plasticity. Wiley, New York
[35] Simo JC, Kennedy JG (1992) On a stress resultant geometrically exact shell-model, Part V. Nonlinear plasticity—formulation and integration algorithms. Comput Methods Appl Mech Eng 96(2):133-171. doi:10.1016/0045-7825(92)90129-8 · Zbl 0754.73042 · doi:10.1016/0045-7825(92)90129-8
[36] Nour-Omid B, Rankin CC (1991) Finite rotation analysis and consistent linearization using projectors. Comput Methods Appl Mech Eng 93(3):353-384. doi:10.1016/0045-7825(91)90248-5 · Zbl 0757.73034 · doi:10.1016/0045-7825(91)90248-5
[37] Simo JC, Tarnow N (1994) A new energy and momentum conserving algorithm for the non-linear dynamics of shells. Int J Numer Methods Eng 37(15):2527-2549. doi:10.1002/nme.1620371503 · Zbl 0808.73072 · doi:10.1002/nme.1620371503
[38] Simo JC, Rifai MS, Fox DD (1992) On a stress resultant geometrically exact shell-model, Part VI. Conserving algorithms for nonlinear dynamics. Int J Numer Methods Eng 34(1):117-164. doi:10.1002/nme.1620340108 · Zbl 0760.73045 · doi:10.1002/nme.1620340108
[39] MacNeal RH, Harder RL (1985) Proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3-20. doi:10.1016/0168-874X(85)90003-4 · doi:10.1016/0168-874X(85)90003-4
[40] Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell-model, Part III. Computational aspects of the nonlinear-theory. Comput Methods Appl Mech Eng 79(1):21-70. doi:10.1016/0045-7825(90)90094-3 · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[41] Buechter N, Ramm E (1992) Shell theory versus degeneration—a comparison in large rotation finite-element analysis. Int J Numer Methods Eng 34(1):39-59. doi:10.1002/nme.1620340105 · Zbl 0760.73041 · doi:10.1002/nme.1620340105
[42] Eberlein R, Wriggers P (1999) Finite element concepts for finite elastoplastic strains and isotropic stress response in shells: theoretical and computational analysis. Comput Methods Appl Mech Eng 171(3-4):243-279. doi:10.1016/S0045-7825(98)00212-6 · Zbl 0957.74047 · doi:10.1016/S0045-7825(98)00212-6
[43] Dvorkin EN, Pantuso D, Repetto EA (1995) A formulation of the MITC4 shell element for finite strain elastoplastic analysis. Comput Methods Appl Mech Eng 125(1-4):17-40. doi:10.1016/0045-7825(95)00767-U · doi:10.1016/0045-7825(95)00767-U
[44] Tan XG, Vu-Quoc L (2005) Efficient and accurate multilayer solid-shell element: nonlinear materials at finite strain. Int J Numer Methods Eng 63(15):2124-2170. doi:10.1002/nme.1360 · Zbl 1134.74414
[45] Betsch P, Stein E (1999) Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains. Comput Methods Appl Mech Eng 179(3-4):215-245. doi:10.1016/S0045-7825(99)00063-8 · Zbl 0965.74060 · doi:10.1016/S0045-7825(99)00063-8
[46] Valente RAF, Parente MPL, Jorge RMN, de Sa JMAC, Gracio JJ (2005) Enhanced transverse shear strain shell formulation applied to large elasto-plastic deformation problems. Int J Numer Methods Eng 62(10):1360-1398. doi:10.1002/nme.1231 · Zbl 1078.74657 · doi:10.1002/nme.1231
[47] Brank B, Peric D, Damjanic FB (1997) On large deformations of thin elasto-plastic shells: implementation of a finite rotation model for quadrilateral shell element. Int J Numer Methods Eng 40(4):689-726. doi:10.1002/(SICI)1097-0207 · Zbl 0892.73055 · doi:10.1002/(SICI)1097-0207
[48] Roehl D, Ramm E (1996) Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. Int J Solids Struct 33(20-22):3215-3237. doi:10.1016/0020-7683(95)00246-4 · Zbl 0926.74109 · doi:10.1016/0020-7683(95)00246-4
[49] Dujc J, Brank B (2012) Stress resultant plasticity for shells revisited. Comput Methods Appl Mech Eng 247:146-165. doi:10.1016/j.cma.2012.07.012 · Zbl 1352.74172 · doi:10.1016/j.cma.2012.07.012
[50] Miehe C (1998) A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput Methods Appl Mech Eng 155(3-4):193-233. doi:10.1016/S0045-7825(97)00149-7 · Zbl 0970.74043 · doi:10.1016/S0045-7825(97)00149-7
[51] Rankin CC, Brogan FA (1986) An element independent corotational procedure for the treatment of large rotation. ASME J Pressure Vessel Technol 108:165-174 · doi:10.1115/1.3264765
[52] Yang HTY, Saigal S, Masud A, Kapania RK (2000) Survey of recent shell finite elements. Int J Numer Methods Eng 47:101-127. doi:10.1002/(SICI)1097-0207 · Zbl 0987.74001 · doi:10.1002/(SICI)1097-0207
[53] Izzuddin BA (2005) An enhanced co-rotational approach for large displacement analysis of plates. Int J Numer Methods Eng 64(10):1350-1374. doi:10.1002/nme.1415 · Zbl 1122.74510 · doi:10.1002/nme.1415
[54] Li ZX (2007) A co-rotational formulation for 3D beam element using vectorial rotational variables. Comput Mech 39(3):309-322. doi:10.1007/s00466-006-0029-x · Zbl 1169.74046 · doi:10.1007/s00466-006-0029-x
[55] Li ZX (2009) Bionics and computational theory using advanced finite element methods. Science Press, Beijing
[56] Li ZX, Zhuo X, Vu-Quoc L, Izzuddin BA, Wei HY (2013) A 4-node co-rotational quadrilateral elasto-plastic shell element using vectorial rotational variables. Int J Numer Methods Eng 95(3):181-211. doi:10.1002/nme.4471 · Zbl 1352.74398
[57] Davis P, Rabinowitz P (1956) Abscissas and weights for Gaussian quadratures of high order. J Res Natl Bureau Stand 56(1):35-37. doi:10.6028/jres.056.005 · Zbl 0074.33004
[58] Michels HH (1963) Abscissas and weight coefficients for Lobatto quadrature. Math Comput 17(83):237-244. doi:10.1090/S0025-5718-1963-0158540-4 · Zbl 0113.11202 · doi:10.1090/S0025-5718-1963-0158540-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.