×

Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. (English) Zbl 1349.74180

Summary: The vibration behavior of the rotating viscoelastic nanobeam embedded in the visco-Pasternak foundation is studied. The governing equation is extracted by using the surface elasticity and the nonlocal elasticity theory. The influence of the humidity on the vibration frequencies of the viscoelastic nanobeam is investigated in the thermal environment. The effects of the linear and the nonlinear thermal stress cases on the vibration frequencies of the viscoelastic nanobeam are studied. The vibration frequencies are obtained based on the differential quadrature method. Also, the numerical results are compared with those which are reported in the literature, and a good correlation is obtained. The results are presented for the different boundary conditions as well as the effect of the torsion spring on the viscoelastic nanobeam ends is investigated. This study focuses on the combined effects of the angular velocity, the internal and external damping, the humidity change, the temperature change, the surface effects (surface density, surface elasticity and surface stress), the nonlocal parameter, the boundary conditions, the visco-Pasternak foundation, the cross section geometry, and the torsion spring. The results of this study could be used to design and manufacture nanosensors, biosensors, atomic force microscope and the NEMS/MEMS devices.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74M25 Micromechanics of solids
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Raighead, H.G.C.: Nanoelectromechanical systems. Science 290, 1532-1535 (2000) · doi:10.1126/science.290.5496.1532
[2] Ekinci, K.L., Roukes, M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 1-12 (2005) · doi:10.1063/1.1927327
[3] Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415-448 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[4] Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385-414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[5] Akgöz, B., Civalek, Ö.: Strain gradient and modified couple stress models for buckling analysis of axially loaded micro-scales beam. Int. J. Eng. Sci. 49, 1268-1280 (2011) · Zbl 1423.74338 · doi:10.1016/j.ijengsci.2010.12.009
[6] Reddy, J.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288-307 (2007) · Zbl 1213.74194 · doi:10.1016/j.ijengsci.2007.04.004
[7] Civalek, Ö., Demir, C., Akgöz, B.: Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Comput. Appl. 15, 289-298 (2010) · Zbl 1202.35321
[8] Malekzadeh, P., Setoodeh, A.R., Alibeygi-Beni, A.: Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium. Compos. Struct. 93, 2083-2089 (2011) · doi:10.1016/j.compstruct.2011.02.013
[9] Arda, M., Aydogdu, M.: Torsional statics and dynamics of nanotubes embedded in an elastic medium. Compos. Struct. 114, 80-91 (2014) · doi:10.1016/j.compstruct.2014.03.053
[10] Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423-443 (2012) · Zbl 1293.74252 · doi:10.1007/s00419-011-0565-5
[11] Akgöz, B., Civalek, Ö.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1-14 (2013) · Zbl 1398.74117 · doi:10.1016/j.ijengsci.2013.04.004
[12] Ghorbanpour, A., Arani, R., Kolahchi, H.: Vossough, nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient. Phys. B Condens. Matter 407, 4281-4286 (2012) · doi:10.1016/j.physb.2012.07.018
[13] Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703-4710 (1983) · doi:10.1063/1.332803
[14] Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002) · Zbl 1023.74003
[15] He, L., Lim, C., Wu, B.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847-857 (2004) · Zbl 1075.74576 · doi:10.1016/j.ijsolstr.2003.10.001
[16] Gurtin, M., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[17] Gurtin, M., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093-1109 (1998) · doi:10.1080/01418619808239977
[18] Assadi, A., Farshi, B.: Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies. Phys. E Low Dimens. Syst. Nanostructures 43, 1111-1117 (2011) · doi:10.1016/j.physe.2011.01.011
[19] Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. Part B Eng. 42, 934-937 (2011) · doi:10.1016/j.compositesb.2010.12.026
[20] Sharabiani, P.A., Haeri Yazdi, M.R.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B Eng. 45, 581-586 (2013) · doi:10.1016/j.compositesb.2012.04.064
[21] Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199-206 (2013) · doi:10.1016/j.compositesb.2013.04.023
[22] Ece, M., Aydogdu, M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185-195 (2007) · Zbl 1117.74022 · doi:10.1007/s00707-006-0417-5
[23] Wang, K., Wang, B.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Phys. E Low Dimens. Syst. Nanostructures 44, 448-453 (2011) · doi:10.1016/j.physe.2011.09.019
[24] Reddy, J.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507-1518 (2010) · Zbl 1231.74048 · doi:10.1016/j.ijengsci.2010.09.020
[25] Narendar, S.: Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia. Appl. Math. Comput. 219, 1232-1243 (2012) · Zbl 1286.74059
[26] Aranda-Ruiz, J., Loya, J., Fernandez-Saez, J.: Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos. Struct. 94, 2990-3001 (2012) · doi:10.1016/j.compstruct.2012.03.033
[27] Demir, Ç., Civalek, Ö.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37, 9355-9367 (2013) · Zbl 06951960 · doi:10.1016/j.apm.2013.04.050
[28] Aydogdu, M.: Longitudinal wave propagation in multiwalled carbon nanotubes. Compos. Struct. 107, 578-584 (2014) · doi:10.1016/j.compstruct.2013.08.031
[29] Lee, H.-L., Chang, W.-J.: Surface and small-scale effects on vibration analysis of a nonuniform nanocantilever beam. Phys. E Low Dimens. Syst. Nanostructures 43, 466-469 (2010) · doi:10.1016/j.physe.2010.08.030
[30] Lei, X.W., Natsuki, T., Shi, J.X., Ni, Q.Q.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B Eng. 43, 64-69 (2012) · doi:10.1016/j.compositesb.2011.04.032
[31] Gheshlaghi, B., Hasheminejad, S.M.: Vibration analysis of piezoelectric nanowires with surface and small scale effects. Curr. Appl. Phys. 12, 1096-1099 (2012) · doi:10.1016/j.cap.2012.01.014
[32] Wang, K., Wang, B.: The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects. Europhys. Lett. 97, 66005 (2012) · doi:10.1209/0295-5075/97/66005
[33] Malekzadeh, P., Shojaee, M.: Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. Part B Eng. 52, 82-94 (2013) · doi:10.1016/j.compositesb.2013.03.046
[34] Mahmoud, F., Eltaher, M., Alshorbagy, A., Meletis, E.: Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26, 3555-3563 (2012) · doi:10.1007/s12206-012-0871-z
[35] Eltaher, M.A., Mahmoud, F.F., Assie, A.E., Meletis, E.I.: Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224, 760-774 (2013) · Zbl 1334.74041
[36] Pradhan, S.C., Murmu, T.: Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys. E Low Dimens. Syst. Nanostructures 42, 1944-1949 (2010) · doi:10.1016/j.physe.2010.03.004
[37] Sun-Bae, K., Ji-Hwan, K.: Quality factors for the nano-mechanical tubes with thermoelastic damping and initial stress. J. Sound Vib. 330, 1393-1402 (2011) · doi:10.1016/j.jsv.2010.10.015
[38] Yadollahpour, M., Ziaei-Rad, S., Karimzadeh, F.: Finite element modeling of damping capacity in nano-crystalline materials. Int. J. Model. Simul. Sci. Comput. 1, 421-433 (2010) · doi:10.1142/S1793962310000237
[39] Payton, D., Picco, L., Miles, M.J., Homer, M.E., Champneys, A.R.: Modelling oscillatory flexure modes of an atomic force microscope cantilever in contact mode whilst imaging at high speed. Nanotechnology 23, 265702 (2012) · doi:10.1088/0957-4484/23/26/265702
[40] Atanackovic, T.M., Bouras, Y., Zorica, D.: Nano-and viscoelastic Beck’s column on elastic foundation. Acta Mech. 226, 2335-2345 (2015) · Zbl 1325.74079 · doi:10.1007/s00707-015-1327-1
[41] Akgoz, B., Civalek, O.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20, 606-616 (2014) · doi:10.1177/1077546312463752
[42] Zenkour, A.M., Abouelregal, A.E.: Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model. Acta Mech. 225, 3409-3421 (2014) · Zbl 1326.74062 · doi:10.1007/s00707-014-1146-9
[43] Murmu, T., McCarthy, M.A., Adhikari, S.: Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. J. Appl. Phys. 331, 5069-5086 (2012)
[44] Civalek, Ö., Demir, Ç.: Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory. Appl. Math. Model. 35, 2053-2067 (2011) · Zbl 1217.74066 · doi:10.1016/j.apm.2010.11.004
[45] Farajpour, A., Solghar, A.A., Shahidi, A.: Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Phys. E Low Dimens. Syst. Nanostructures 47, 197-206 (2013) · doi:10.1016/j.physe.2012.10.028
[46] Asemi, S.R., Farajpour, A.: Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheets including surface effects. Phys. E Low Dimens. Syst. Nanostructures 60, 80-90 (2014) · doi:10.1016/j.physe.2014.02.002
[47] Asemi, S.R., Farajpour, A., Borghei, M., Hassani, A.H.: Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics. Latin Am. J. Solids Struct. 11, 704-724 (2014) · doi:10.1590/S1679-78252014000400009
[48] Akgoz, B., Civalek, O.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863-873 (2013) · Zbl 1293.74276 · doi:10.1007/s11012-012-9639-x
[49] Mohammadi, M., Goodarzi, M., Ghayour, M., Farajpour, A.: Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory. Compos. Part B 51, 121-129 (2013) · doi:10.1016/j.compositesb.2013.02.044
[50] Mohammadi, M., Farajpour, A., Goodarzi, M., Dinari, F.: Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium. Latin Am. J. Solids Struct. 11, 659-682 (2014) · doi:10.1590/S1679-78252014000400007
[51] Mohammadi, M., Moradi, A., Ghayour, M., Farajpour, A.: Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium. Latin Am. J. Solids Struct. 11, 437-458 (2014) · doi:10.1590/S1679-78252014000300005
[52] Mohammadi, M., Heydarshenas, R., Ghayour, M., Dinari, F.: Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium. J. Solid Mech. 5, 116-132 (2013)
[53] Mohammadi, M., Farajpour, A., Goodarzi, M., Mohammadi, H.: Temperature effect on vibration analysis of annular graphene sheet embedded in an elastic medium under in-plane pre-load. J. Solid Mech. 5, 305-323 (2013)
[54] Moosavi, H., Mohammadi, M., Farajpour, A., Shahidi, S.H.: Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory. Phys. E 44, 135-140 (2011) · doi:10.1016/j.physe.2011.08.002
[55] Farajpour, A., Mohammadi, M., Shahidi, A.R., Mahzoon, M.: Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Phys. E 43, 1820-1825 (2011) · doi:10.1016/j.physe.2011.06.018
[56] Asemi, S.R., Mohammadi, M., Farajpour, A.: A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory. Latin Am. J. Solids Struct. 11, 1541-1564 (2014)
[57] Safarabadi, M., Mohammadi, M., Farajpour, A., Goodarzi, M.: Effect of surface energy on the vibration analysis of rotating nanobeam. J. Solid Mech. 7, 299-311 (2015)
[58] Asemi, S., Farajpour, A., Mohammadi, M.: Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory. Compos. Struct. 116, 703-712 (2014) · doi:10.1016/j.compstruct.2014.05.015
[59] Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423-443 (2012) · Zbl 1293.74252 · doi:10.1007/s00419-011-0565-5
[60] Akgöz, B., Civalek, Ö.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164-171 (2012) · doi:10.1016/j.matdes.2012.06.002
[61] Farajpour, A., Rastgoo, A., Mohammadi, M.: Surface effects on the mechanical characteristics of microtubule networks in living cells. Mech. Res. Commun. 57, 18-26 (2014) · doi:10.1016/j.mechrescom.2014.01.005
[62] Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104-094115 (2005) · doi:10.1103/PhysRevB.71.094104
[63] Hosseini-Hashemi, S., Fakher, M., Nazemnezhad, R.: Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko. J. Solid Mech. 5, 290-304 (2013)
[64] Jiang, B.K., Xu, J., Li, Y.H.: Flapwise vibration analysis of a rotating composite beam under hygrothermal environment. Compos. Struct. 117, 201-211 (2014) · doi:10.1016/j.compstruct.2014.04.008
[65] Zenkour, A.M.: Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory. Compos. Struct. 94, 3685-3696 (2012) · doi:10.1016/j.compstruct.2012.05.033
[66] Lei, Y., Adhikari, S., Friswell, M.I.: Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66, 1-13 (2013) · Zbl 1423.74398
[67] Jekot, T.: Nonlinear problems of thermal postbuckling of a beam. J. Therm. Stress. 19, 356-367 (1996) · doi:10.1080/01495739608946180
[68] Liu, C., Rajapakse, R.: Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. Nanotechnology 9, 422-431 (2010)
[69] Wang, L.F., Hu, H.Y.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005) · doi:10.1103/PhysRevB.71.195412
[70] Duan, W.H., Wang, C.M., Zhang, Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007) · doi:10.1063/1.2423140
[71] Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1-27 (1996) · doi:10.1115/1.3101882
[72] Shu, C.: Differential Quadrature and its Application in Engineering. Springer, London (2000) · Zbl 0944.65107 · doi:10.1007/978-1-4471-0407-0
[73] Mohammadi, M., Goodarzi, M., Ghayour, M., Alivand, S.: Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory. J. Solid Mech. 4, 121-143 (2012)
[74] Mohammadi, M., Farajpour, A., Moradi, A., Ghayour, M.: Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment. Compos. Part B Eng. 56, 629-637 (2014) · doi:10.1016/j.compositesb.2013.08.060
[75] Mohammadi, M., Farajpour, A., Goodarzi, M., Shehni-nezhad-pour, H.: Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium. Comput. Mater. Sci. 82, 510-520 (2014) · doi:10.1016/j.commatsci.2013.10.022
[76] Shu, C., Richards, Be: Application of generalized differential quadrature to solve two-dimensional incompressible Navier Stokes equations. Int. J. Numer. Methods Fluids 15, 791-798 (1992) · Zbl 0762.76085 · doi:10.1002/fld.1650150704
[77] Civalek, Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171-186 (2004) · doi:10.1016/j.engstruct.2003.09.005
[78] Miller, R.E., Shenoy, V.B.: Size dependent elastic properties of structural elements. Nanotechnology 11, 139-147 (2000) · doi:10.1088/0957-4484/11/3/301
[79] Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443-6453 (1984) · doi:10.1103/PhysRevB.29.6443
[80] Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E Low Dimens. Syst. Nanostructures 41, 1651-1655 (2009) · doi:10.1016/j.physe.2009.05.014
[81] Reddy, J.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288-307 (2007) · Zbl 1213.74194 · doi:10.1016/j.ijengsci.2007.04.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.