×

Finite element approximation of level set motion by powers of the mean curvature. (English) Zbl 1404.35215

Summary: In this paper we study the level set formulations of certain geometric evolution equations from a numerical point of view. Specifically, we consider the flow by powers greater than one of the mean curvature (PMCF) and the inverse mean curvature flow (IMCF). Since the corresponding equations in level set form are quasi-linear, degenerate, and especially possibly singular a regularization method is used in the literature to approximate these equations to overcome the singularities of the equations. The regularized equations depend both on an regularization parameter and in case of the ICMF additionally on further parameters. Motivated by [X. Feng et al., Numer. Math. 108, No. 1, 93–119 (2007; Zbl 1134.65078)], who study the finite element approximation of IMCF, we prove error estimates for the finite element approximation of the regularized equations for PMCF. We validate the rates with numerical examples. Additionally, the regularization error in the rotationally symmetric case for both flows is numerically analyzed in a two-dimensional setting. Therefore, in the case of IMCF we fix the additional parameters. Furthermore, having the goal to estimate the regularization error we derive barriers for the regularized level set IMCF respecting all parameters and specify them further in a rotationally symmetric simplified case. At the end of the paper we present simulations in the three-dimensional case.

MSC:

35J93 Quasilinear elliptic equations with mean curvature operator
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
35D40 Viscosity solutions to PDEs

Citations:

Zbl 1134.65078

Software:

Gmsh; DUNE; FreeFem++; PDELab; ISTL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal., 123 (1993), pp. 199–257. · Zbl 0788.68153
[2] L. Alvarez and J.-M. Morel, Formalization and computational aspects of image analysis, Acta Numer., Cambridge University Press, Cambridge, UK, 1993, pp. 200–257.
[3] B. Andrews, Evolving convex curves, Calc. Var. Partial Differential Equations, 7 (1998), pp. 315–371. · Zbl 0931.53030
[4] B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16 (2003), pp. 443–459. · Zbl 1023.53051
[5] B. Andrews and J. McCoy, Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature, Trans. Amer. Math. Soc., 364 (2012), pp. 3427–3447. · Zbl 1277.53061
[6] S. B. Angenent, G. Sapiro, and A. Tannenbaum, On affine heat equation for non-convex curves, J. Amer. Math. Soc., 11 (1998), pp. 601–634. · Zbl 0902.35048
[7] J. Barrett, K. Deckelnick, and V. Styles, Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve, SIAM Numer. Anal., 55 (2017), pp. 1080–1100. · Zbl 1365.65218
[8] J. W. Barrett, H. Garcke, and R. Nürnberg, On the variational approximation of combined second and fourth order geometric evolution equations, SIAM J. Sci. Comput, 29 (2007), pp. 1006–1041. · Zbl 1148.65074
[9] J. W. Barrett, H. Garcke, and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in \(\mathbb{R}^3\), J. Comput. Phys., 227 (2008), pp. 4281–4307. · Zbl 1145.65068
[10] J. W. Barrett, H. Garcke, and R. Nürnberg, Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves, Numer. Math., 120 (2012), pp. 489–542. · Zbl 1242.65188
[11] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE, Computing, 82 (2008), pp. 121–138. · Zbl 1151.65088
[12] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework, Computing, 82 (2008), pp. 103–119. · Zbl 1151.65089
[13] P. Bastian, F. Heimann, and S. Marnach, Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE), Kybernetika, 46 (2010), pp. 294–315. · Zbl 1195.65130
[14] G. Bellettini and I. Fragalá, Elliptic approximations of prescribed mean curvature surfaces in Finsler geometry, Asymptot. Anal., 22 (2000), pp. 87–111. · Zbl 0976.53080
[15] M. Blatt and P. Bastian, The Iterative Solver Template Library, Springer, New York, 2007.
[16] T. Bourni and K. Moore, Null mean curvature flow and outermost MOTS, J. Differential Geom., preprint.
[17] J. W. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Appl. Math. 15, Springer, Berlin, 1996.
[18] E. Carlini, M. Falcone, and Ferretti, Convergence of a large time-step scheme for mean curvature motion, Interfaces Free Bound., 12 (2010), pp. 409–441. · Zbl 1416.65304
[19] V. Caselles, F. Catte, T. Coll, and F. Dibos, A geometric model for active contours in image processing, Numer. Math., 66 (1993), pp. 1–31. · Zbl 0804.68159
[20] T. Chan and L. Vese, An Active Contour Model Without Edges, in Scale-Space ’99, M. Nielsen et al., eds., Lecture Notes in Comput. Sci. 1682, Springer, Berlin, 1999, pp. 141–151.
[21] Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Proc. Japan. Acad., 65 (1989), pp. 207–210. · Zbl 0735.35082
[22] Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), pp. 749–786. · Zbl 0696.35087
[23] M. G. Crandall, H. Ishii, and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soci. (N.S.), 27 (1992), pp. 1–67.
[24] M. G. Crandall and P.-L. Lions, Convergent difference schemes for nonlinear parabolic equations and mean curvature flow, Numer. Math., 75 (1996), pp. 17–41. · Zbl 0874.65066
[25] K. Deckelnick, Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow, Interfaces Free Bound., 2 (2000), pp. 117–142. · Zbl 0997.65112
[26] K. Deckelnick and G. Dziuk, Convergence of a finite element method for non–parametric mean curvature flow, Numer. Math., 72 (1995), pp. 197–222. · Zbl 0838.65103
[27] K. Deckelnick and G. Dziuk, Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound., 2 (2000), pp. 341–359. · Zbl 0974.65088
[28] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer., 14 (2005), pp. 139–232. · Zbl 1113.65097
[29] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1990), pp. 603–611. · Zbl 0714.65092
[30] G. Dziuk, Convergence of a semi-discrete scheme for the curve shortening flow, Math. Models Methods Appl. Sci., 4 (1994), pp. 589–606. · Zbl 0811.65112
[31] K. Deckelnick and G. Dziuk, Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow, in Numerical Methods for Viscosity Solutions and Applications, M. Falcone and C. Makridakis, eds., Series Adv. Math. Appl. Sciences, 59, Springer, Berlin, 2001, pp. 77–94. · Zbl 0989.65103
[33] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2), 130 (1989), pp. 453–471. · Zbl 0696.53036
[34] C. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal., 37 (2017), pp. 543–603. · Zbl 1433.65219
[35] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 1367–1385. · Zbl 1378.65041
[36] L. C. Evans and J. Spruck, Motion of level sets by mean curvature, J. Differential Geom., 33 (1991), pp. 635–681. · Zbl 0726.53029
[37] X. Feng, M. Neilan, and A. Prohl, Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity, Numer. Math., 108 (2007), pp. 93–119. · Zbl 1134.65078
[38] M. E. Gage, Curve shortening makes convex curves circular, Invent. Math., 76 (1984), pp. 357–364. · Zbl 0542.53004
[39] Y. Giga, Surface Evolution Equations. A Level Set Approach, Monogr. Math. 99, Birkhäuser Verlag, Basel, 2006. · Zbl 1096.53039
[40] M. E. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), pp. 69–96. · Zbl 0621.53001
[41] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom., 32 (1990), pp. 299–314. · Zbl 0708.53045
[42] R. Geroch, Energy extraction, Ann. New York Acad. Sci., 224 (1973), pp. 108–117. · Zbl 0942.53509
[43] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309–1331. · Zbl 1176.74181
[44] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Math. 224, Springer, Berlin, 2001. · Zbl 1042.35002
[45] M. Grayson, The heat equation shrinks embedded plane curves to points, J. Differential Geom., 26 (1987), pp. 285–314. · Zbl 0667.53001
[46] R. Haslhofer and B. Kleiner, Mean curvature flow of mean convex hypersurfaces, Comm. Pure Appl. Math., 70 (2017), pp. 511–546. · Zbl 1360.53069
[47] F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), pp. 251–265. · Zbl 1266.68090
[48] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), pp. 117–138. · Zbl 0556.53001
[49] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom., 59 (2001), pp. 353–437. · Zbl 1055.53052
[50] P. S. Jang and R. M. Wald, The positive energy conjecture and the cosmic censor hypothesis, J. Math. Phys., 18 (1997), pp. 41–44.
[51] R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59 (2006), pp. 344–407. · Zbl 1206.53072
[52] B. Kovács, B. Li, and C. Lubich, A Convergent Evolving Finite Element Algorithm for Mean Curvature Flow of Closed Surfaces, preprint, University of Tübingen, 2018.
[53] H. Kröner, Approximation rates for regularized level set power mean curvature flow, Port. Math. (N.S.), 74 (2017), pp. 115–126.
[54] H. Kröner, Analysis of Constants in Error Estimates for the Finite Element Approximation of Fully Nonlinear Geometric Evolution Equations, preprint.
[55] R. Malladi and J. A. Sethian, Level set methods for curvature flow, image enhancement, and shape recovery in medical images, in Visualization and Mathematics. Experiments, Simulation and Environments, H. C. Helde and K. Polthier, eds., Springer, Berlin, 1997, pp. 329–345.
[56] O. Masaki and S. Koh, Singular degenerate parabolic equations with applications, Comm. Partial Differential Equations, 22 (1997), pp. 381–441. · Zbl 0990.35077
[57] K. Mikula and D. Ševčovč, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy, SIAM J. Appl. Math., 61 (2001), pp. 1473–1501. · Zbl 0980.35078
[58] H. Mitake, On convergence rates for solutions of approximate mean curvature equations, Proc. Amer. Math. Soc., 139 (2011), pp. 3691–3696. · Zbl 1241.53057
[59] R. H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation of curvature-driven interfaces, SIAM J. Numer. Anal., 34 (1997), pp. 490–512. · Zbl 0876.35053
[60] K. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Appl. Math. Sci. 153, Springer, Berlin, 2003. · Zbl 1026.76001
[61] K. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys., 79 (1988), pp. 12–49. · Zbl 0659.65132
[62] PDELab, (2014).
[63] G. Sapiro and A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal., 119 (1994), pp. 79–120. · Zbl 0801.53008
[64] F. Schulze, Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z., 251 (2005), pp. 721–733. · Zbl 1087.53062
[65] F. Schulze, Nonlinear evolution by mean curvature and isoperimetrical inequalities, J. Differential Geom., 79 (2008), pp. 197–241. · Zbl 1202.53066
[66] F. Schulze, Convexity estimates for flows by powers of the mean curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2006), pp. 261–277. · Zbl 1150.53024
[67] J. A. Sethian, Theory, algorithms, and applications of level set methods for propagating interfaces, Acta Numer., 5 (1996), pp. 309–395. · Zbl 0868.65059
[68] J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge Monogr. Appl. Comput. Math., 3, Cambridge University Press, Cambridge, UK, 1999.
[69] C. G. Simader, On Dirichlet’s Boundary Value Problem. An \(L^p\)-Theory Based on a Generalization of Garding’s Inequality, Lecture Notes in Math. 268, Springer, Berlin 1972. · Zbl 0242.35027
[70] I. Toulopoulos and T. Wick, Numerical methods for power-law diffusion problems, SIAM J. Sci. Comput., 39 (2017), pp. A681–A710. · Zbl 1365.65263
[71] J. I. E Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z., 205 (1990), pp. 355–372. · Zbl 0691.35048
[72] N. J. Walkington, Algorithms for computing motion by mean curvature, SIAM J. Numer. Anal, 33 (1996), pp. 2215–2238. · Zbl 0863.65061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.