×

Numerical method for coupled interfacial surfactant transport on dynamic surface meshes of general topology. (English) Zbl 1390.76052

Summary: We consider surfactant transport on moving and deforming fluid interfaces with main emphasize on the case of mixtures of several surfactants. Since the interface can be significantly covered by surfactants, the model incorporates cross-effects in terms of both cross-diffusion as well as non-idealities of the surfactant mixtures. This is accounted for by means of the interfacial Maxwell-Stefan equations with appropriate thermodynamic driving forces.
Our numerical method for detailed computation of surfactant transport is based on the collocated finite area method on meshes of general topology, including automatic mesh motion and remeshing methods to allow for strongly deforming interfaces. This allows for mass conservative solution of the interfacial transport equations, which are solved in a block-coupled manner to accurately describe the cross-effects. The diffusive fluxes, which are to be inserted into the system of surfactant balances, come from an iterative inversion of the Maxwell-Stefan equations. The cross-effects lead to heterogeneous diffusivities, which in turn can cause numerical instabilities at increasing heterogeneity. Therefore, we propose an enhanced discretization procedure which is easy to implement for the finite area diffusion operator, yielding numerical conservation, robustness and boundedness. While the method can be extended to soluble surfactants in a straightforward manner, we focus here on the insoluble case.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed - algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 79, 12-49, (1988) · Zbl 0659.65132
[2] Sethian, J., Level set methods: evolving interfaces in geometry, (Fluid mechanics, computer vision, and materials science, (1996), Cambridge University Press) · Zbl 0859.76004
[3] Sethian, J., Level set methods and fast marching methods, (1999), Cambridge University Press · Zbl 0929.65066
[4] Osher, S.; Fedkiw, R., Level set methods and dynamic implicit surfaces, (2002), Springer
[5] Bertalmio, M.; Cheng, L. T.; Osher, S.; Sapiro, G., Variational problems and partial differential equations on implicit surfaces: the framework and examples in image processing and pattern formulation, J Comput Phys, 174, 759-780, (2001) · Zbl 0991.65055
[6] Bertalmio, M.; Memoli, F.; Cheng, L. T.; Sapiro, G.; Osher, S., Variational problems and partial differential equations on implicit surfaces: bye bye triangulated surfaces?, (Geometric Level Set methods in imaging, vision, and graphics, (2003), Springer New York), 381-397, ISBN 978-0-387-95488-2
[7] Greer, J., An improvement of a recent Eulerian method for solving PDEs on general geometries, SIAM J Sci Comput, 29, 323-352, (2006) · Zbl 1122.65073
[8] Dziuk, G.; Elliott, C., Eulerian finite element method for parabolic PDEs on implicit surfaces, Interface Free Bound, 10, 119-138, (2008) · Zbl 1145.65073
[9] Adalsteinson, D.; Sethian, J., A level set approach to a unified model for etching, deposition, and lithography. iii: re-deposition, re-emission, surface diffusion, and complex simulations, J Comput Phys, 120, 138-193, (1996)
[10] Adalsteinson, D.; Sethian, J., Transport and diffusion of material quantities on propagating interfaces via level set methods, J Comput Phys, 185, 271-288, (2003) · Zbl 1047.76093
[11] Xu, J. J.; Zhao, H., An Eulerian formulation for solving partial differential equations along a moving interface, SIAM J Sci Comput, 19, 573-594, (2003) · Zbl 1081.76579
[12] Xu, J. J.; Li, Z.; Lowengrub, J.; Zhao, H., A level-set method for interfacial flows with surfactants, J Comput Phys, 212, 590-616, (2006) · Zbl 1161.76548
[13] Olshanskii, M.; Reusken, A., A finite element method for surface PDEs: matrix properties, Numer Math, 114, 491-520, (2010) · Zbl 1204.65136
[14] Dziuk, G.; Elliott, C., An Eulerian approach to transport and diffusion on evolving implicit surfaces, Comput Visual Sci, 13, 17-28, (2010) · Zbl 1220.65132
[15] Kallendorf, C.; Cheviakov, A.; Oberlack, M.; Wang, Y., Conservation laws of surfactant transport equations, Phys Fluids, 24, 10, (2012), 102105-1-15
[16] Anco, S.; Bluman, G. W., Direct construction method for conservation laws of partial differential equations. part I: examples of conservation law classifications, Eur J Appl Math, 13, 545-566, (2002) · Zbl 1034.35070
[17] Anco, S.; Bluman, G., Direct construction method for conservation laws of partial differential equations. part II: general treatment, Eur J Appl Math, 13, 567-585, (2002) · Zbl 1034.35071
[18] Bluman, G.; Cheviakov, A.; Anco, S., Applications of symmetry methods to partial differential equations, (Applied mathematical sciences, vol. 168, (2010), Springer New York) · Zbl 1223.35001
[19] DeBar R. Fundamentals of the KRAKEN code. [Eulerian hydrodynamics code for compressible nonviscous flow of several fluids in two-dimensional (axially symmetric) region]. Tech rep; California Univ, Livermore (USA). Lawrence Livermore Lab; 1974.
[20] Noh W, Woodward P. SLIC (Simple Line Interface Calculation). In: Proceedings of the fifth international conference on numerical methods in fluid dynamics June 28-July 2, Twente University, Enschede; 1976. p. 330-40.
[21] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 201-225, (1981) · Zbl 0462.76020
[22] Renardy, Y. Y.; Renardy, M.; Cristini, V., A new volume-of-fluid formulation for surfactants and simulations of drop deformations under shear at a low viscosity ratio, Eur J Mech B - Fluid, 21, 49-59, (2002) · Zbl 1063.76077
[23] Drumright-Clarke, M.; Renardy, Y., The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia, Phys Fluids, 16, 14-21, (2004) · Zbl 1186.76152
[24] James, A.; Lowengrub, J., A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant, J Comput Phys, 201, 685-722, (2004) · Zbl 1061.76062
[25] Rudman, M., A volume tracking method for interfacial flows with large density variations, Int J Numer Meth Fluids, 28, 357-378, (1998) · Zbl 0915.76060
[26] Davidson, M.; Harvie, D., Predicting the effect of interfacial flow of insoluble surfactant on the deformation of drops rising in a liquid, ANZIAM J, 48, C661-C676, (2007)
[27] Yang, X.; James, A., An arbitrary Lagrangian-Eulerian (ALE) method for interfacial flows with insoluble surfactants, FDMP, 3, 65-96, (2007) · Zbl 1153.76401
[28] Sussman, M.; Puckett, E., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J Comput Phys, 162, 301-337, (2000) · Zbl 0977.76071
[29] Alke, A.; Bothe, D., 3D numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method, FDMP, 5, 345-372, (2009)
[30] Anderson, D.; McFadden, G.; Wheeler, A., Diffuse interface methods in fluid mechanics, Ann Rev Fluid Mech, 30, 139-165, (1998)
[31] Kim, J.; Kang, K.; Lowengrub, J., Conservative multigrid methods for Cahn-Hilliard fluids, J Comput Phys, 193, 511-543, (2004) · Zbl 1109.76348
[32] Elliott, C.; Stinner, B., Analysis of a diffuse interface approach to an advection diffusion equation on a moving surface, Math Mod Meth Appl Sci, 19, 787-802, (2009) · Zbl 1200.35018
[33] Elliott, C.; Stinner, B., A surface phase field model for two-phase biological membranes, SIAM J Appl Math, 70, 2904-2928, (2010) · Zbl 1209.92003
[34] Elliott, C.; Stinner, B.; Styles, V.; Welford, R., Numerical computation of advection and diffusion on evolving diffuse interfaces, IMA J Numer Anal, 31, 786-812, (2011) · Zbl 1241.65081
[35] Teigen, K.; Song, P.; Lowengrub, J.; Voigt, A., A diffuse-interface method for two-phase flow with soluble surfactants, J Comput Phys, 230, 375-393, (2011) · Zbl 1428.76210
[36] Rätz, A.; Voigt, A., PDEs on surfaces - a diffuse interface approach, Commun Math Sci, 4, 575-590, (2006) · Zbl 1113.35092
[37] Ladyzhenskaya, O., The mathematical theory of viscous incompressible flow, (1969), Gordon & Breach New York · Zbl 0184.52603
[38] Pozrikidis, C., Boundary integral and singularity methods for linearized viscous flow, (1992), Cambridge University Press · Zbl 0772.76005
[39] Stone, H.; Leal, L., The effect of surfactants on drop deformation and breakup, J Fluid Mech, 220, 161-186, (1990) · Zbl 0706.76124
[40] Li, X.; Pozrikidis, C., The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow, J Fluid Mech, 341, 165-194, (1997) · Zbl 0892.76013
[41] Li, X.; Mao, Z., The effect of surfactant on the motion of a buoyancy-driven drop at intermediate Reynolds numbers: a numerical approach, J Colloid Interface Sci, 240, 307-322, (2001)
[42] Bazhlekov, I.; Anderson, P.; Meijer, H., Boundary integral method for deformable interfaces in the presence of insoluble surfactants, Lect Notes Comput Sci, 2907, 355-362, (2004) · Zbl 1151.76545
[43] Kruijt-Stegeman, Y.; van de Vosse, F.; Meijer, H., Droplet behavior in the presence of insoluble surfactants, Phys Fluids, 16, 2785-2796, (2004) · Zbl 1186.76294
[44] Bazhlekov, I.; Anderson, P.; Meijer, H., Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow, J Colloid Interface Sci, 298, 369-394, (2006)
[45] Feigl, K.; Megias-Alguacil, D.; Fischer, P.; Windhab, E., Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants, Chem Eng Sci, 62, 3242-3258, (2007)
[46] Milliken, W. J.; Leal, L. G., The influence of surfactants on the deformation and break-up of a viscous drop - the effect of surfactant solubility, J Colloid Interf Sci, 166, 275-285, (1994)
[47] Johnson, R.; Borhan, A., Stability of the shape of a surfactant-laden drop translating at low Reynolds number, Phys Fluids, 12, 773-784, (1996) · Zbl 1149.76419
[48] Severino, M.; Campana, D.; Giavedoni, M., Effects of surfactant on the motion of a confined gas-liquid interface. the influence of the peclet number, Lat Am Appl Res, 35, 225-232, (2005)
[49] Dziuk, G.; Elliott, C., Finite elements on evolving surfaces, IMA J Numer Anal, 27, 262-292, (2007) · Zbl 1120.65102
[50] Dziuk, G.; Elliott, C., Surface finite elements for parabolic equations, J Comput Appl Math, 25, 385-407, (2007)
[51] Eilks, C.; Elliott, C., Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method, J Comput Phys, 227, 9727-9741, (2008) · Zbl 1149.76027
[52] Ganesan, S.; Tobiska, L., Arbitrary Lagrangian-Eulerian finite-element method for computation of two-phase flows with soluble surfactants, J Comput Phys, 231, 3685-3702, (2012) · Zbl 1402.76072
[53] Unverdi, S.; Tryggvason, G., A front-tracking method for viscous incompressible multi-fluid flows, J Comput Phys, 100, 25-37, (1992) · Zbl 0758.76047
[54] Tryggvason, G.; Bunner, B.; Esmaeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W., Front tracking method for the computation of multiphase flow, J Comput Phys, 169, 708-759, (2001) · Zbl 1047.76574
[55] Shin, S.; Juric, D., Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, J Comput Phys, 180, 2, 427-470, (2002) · Zbl 1143.76595
[56] Du, J.; Fix, B.; Glimm, J.; Jia, X.; Li, X.; Li, Y., A simple package for front tracking, J Comput Phys, 213, 613-628, (2006) · Zbl 1089.65128
[57] Yamamoto Y, Yamauchi M, Uemura T. Numerical simulation of a contaminated droplet by Front-Tracking method taking the effect of surfactant on the interface. In: Proceeding of FEDSM2006, ASME joint US-European fluids eng conf. Miami (USA); 2006. p. 635-42.
[58] Zhang, J.; Eckmann, D.; Ayyaswamy, P., A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport, J Comput Phys, 214, 366-396, (2006) · Zbl 1137.76819
[59] Muradoglu, M.; Tryggvason, G., A front-tracking method for computation of interfacial flows with soluble surfactants, J Comput Phys, 227, 2238-2262, (2008) · Zbl 1329.76238
[60] Tasoglu, S.; Demirci, U.; Muradoglu, M., The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble, Phys Fluids, 20, 040805, (2008) · Zbl 1182.76750
[61] Muzaferija, S.; Perić, M., Computation of free-surface flows using the finite-volume method and moving grids, Numer Heat Transfer B, 32, 369-384, (1997)
[62] Tuković, Ž; Jasak, H., A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow, Comput Fluids, 55, 0, 70-84, (2012) · Zbl 1291.76223
[63] Tuković Ž, Jasak H. Simulation of free-rising bubbles with soluble surfactants using moving mesh finite volume/area method. In: 6th international conference on CFD in oil and gas, metallurgical and process industries SINTEF/NTNU. Trondheim (Norway); 10-12 June 2008. p. CFD08-072.
[64] Tuković Ž. Metoda Kontrolnih Volumena na Domenama Promjenjivog Oblika. PhD thesis; Sveuciliste u Zagrebu, Fakultet Strojarstva i Brodogradnje; 2005.
[65] Dieter-Kissling K. Direct numerical simulation of multicomponent surfactant transport to and on fluidic interfaces. PhD thesis; Technische Universität Darmstadt; 2014.
[66] Dieter-Kissling, K.; Karbashi, M.; Marschall, H.; Javadi, A.; Miller, R.; Bothe, D., On the applicability of drop profile analysis tensiometry at high flow rates using an interface tracking method, Colloid Surface A, 441, 837-845, (2014)
[67] Wangard, W.; Dandy, D.; Miller, B., A numerically stable method for integration of the multi-component species diffusion equation, J Comput Phys, 174, 460-472, (2001) · Zbl 1009.76068
[68] Mazumder, S., Critical assessment of the stability and convergence of the equations of multi-component diffusion, J Comput Phys, 212, 383-393, (2006) · Zbl 1162.76394
[69] Böttcher, K., Numerical solution of a multi-component species transport problem combining diffusion and fluid flow as engineering benchmark, Int J Heat Mass Transfer, 53, 231-240, (2010) · Zbl 1329.76160
[70] Giovangigli, V., Convergent iterative methods for multicomponent diffusion, Impact CSE, 3, 244-276, (1991) · Zbl 0744.65090
[71] Aavatsmark, I.; Barkve, T.; Boe, O.; Mannseth, T., Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J Comput Phys, 127, 1, 2-14, (1996) · Zbl 0859.76048
[72] Aavatsmark, I.; Barkve, T.; Boe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. part I: derivation of the methods, SIAM J Sci Comput, 19, 5, 1700-1716, (1998) · Zbl 0951.65080
[73] Aavatsmark, I.; Barkve, T.; Boe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. part II: discussion and numerical results, SIAM J Sci Comput, 19, 5, 1717-1736, (1998) · Zbl 0951.65082
[74] Eymard, R.; Gallouet, T.; Herbin, R., Finite volume approximation of elliptic problems and convergence of an approximate gradient, Appl Numer Math, 37, 31-53, (2001) · Zbl 0982.65122
[75] Eymard, R.; Gallouet, T.; Herbin, R., A finite volume scheme for anisotropic diffusion problems, CR Acad Sci Paris, Ser I, 339, 299-302, (2004) · Zbl 1055.65124
[76] Eymard, R.; Gallouet, T.; Herbin, R., A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J Numer Anal, 26, 326-353, (2006) · Zbl 1093.65110
[77] Eymard, R.; Gallouet, T.; Herbin, R., A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, CR Acad Sci Paris, Ser I, 344, 403-406, (2007) · Zbl 1112.65120
[78] Potier, C. L., Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, CR Acad Sci Paris, Ser I, 341, 787-792, (2005) · Zbl 1081.65086
[79] Droniou, J.; Eymard, R., A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer Math, 105, 35-71, (2006) · Zbl 1109.65099
[80] Breil, J.; Maire, P., A cell-centered diffusion scheme on two-dimensional unstructured meshes, J Comput Phys, 224, 2, 785-823, (2007) · Zbl 1120.65327
[81] Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput Methods Appl Mech Eng, 196, 3682-3692, (2007) · Zbl 1173.76370
[82] Eymard, R.; Herbin, R., A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non matching grids, CR Acad Sci Paris, Ser I, 344, 659-662, (2007) · Zbl 1114.76047
[83] Agelas, L.; Pietro, D. D.; Masson, R., Finite volumes for complex applications V, (A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry, (2008), Wiley), 35-51 · Zbl 1374.76105
[84] Eymard, R.; Gallouet, T.; Herbin, R., Finite volumes for complex applications V, (Benchmark on anisotropic problems, SUSHI: a scheme using stabilization and hybrid interfaces for anisotropic heterogeneous diffusion problems, (2008), Wiley), 801-814 · Zbl 1422.65310
[85] Eymard, R.; Gallouet, T.; Herbin, R., Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J Numer Anal, 30, 1009-1043, (2010) · Zbl 1202.65144
[86] Agelas, L.; Eymard, R.; Herbin, R., A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media, CR Acad Sci Paris, Ser I, 347, 673-676, (2009) · Zbl 1166.65051
[87] Gao, Z.; Wu, J., A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes, J Comput Phys, 250, 308-331, (2013) · Zbl 1349.65663
[88] Sun, W.; Wu, J.; Zhang, X., A family of linearity-preserving schemes for anisotropic diffusion problems on arbitrary polyhedral grids, Comput Methods Appl Mech Eng, (2013) · Zbl 1286.76138
[89] Lipnikov, K.; Shashkov, M.; Svyatskiy, D.; Vassilevski, Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J Comput Phys, 227, 492-512, (2007) · Zbl 1130.65113
[90] Yuan, G.; Sheng, Z., Monotone finite volume schemes for diffusion equations on polygonal meshes, J Comput Phys, 227, 6288-6312, (2008) · Zbl 1147.65069
[91] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J Comput Phys, 228, 703-716, (2009) · Zbl 1158.65083
[92] Brewer M, Diachin L, Knupp P, Leurent T, Melander D. The Mesquite mesh quality improvement toolkit. In: Proceedings of the 12th international meshing roundtable, Sandia Nat Lab; 2003. p. 239-50.
[93] Jasak H, Jemcov A, Tuković Ž. OpenFOAM: a C++ library for complex physics simulations. In: International workshop on coupled methods in numerical dynamics IUC, Dubrovnik, Croatia; September 19th-21st 2007. p. 19-21.
[94] de L’isle EB, George P. Optimization of tetrahedral meshes. Model mesh gener adaptive numerical methods for partial differential equations IMA, vol. 72; 1995. p. 97-128.
[95] Freitag, L.; Ollivier-Gooch, C., Tetrahedral mesh improvement using swapping and smoothing, Int J Numer Methods Eng, 40, 3979-4002, (1997) · Zbl 0897.65075
[96] Dai, M.; Schmidt, D., Adaptive tetrahedral remeshing in free-surface flow, J Comput Phys, 208, 228-252, (2005) · Zbl 1114.76333
[97] Quan, S.; Schmidt, D., A moving mesh interface tracking method for 3D incompressible two-phase flows, J Comput Phys, 221, 761-780, (2007) · Zbl 1216.76050
[98] Menon, S.; Schmidt, D., Conservative interpolation on unstructured polyhedral meshes: an extension of the supermesh approach to cell-centered finite-volume variables, Comput Methods Appl Mech Eng, 200, 2797-2804, (2011) · Zbl 1230.76034
[99] Farrell, P.; Piggott, M.; Pain, C.; Gorman, G.; Wilson, C., Conservative interpolation between unstructured meshes via supermesh construction, Comput Methods Appl Mech Eng, 198, 632-2642, (2009) · Zbl 1228.76105
[100] Saad, Y., Iterative methods for sparse linear systems, (2003), Society for Industrial and Applied Mathematics Philadelphia (PA, USA), ISBN 0898715342 · Zbl 1002.65042
[101] Clifford I. Block-coupled simulations using OpenFOAM. In: 6th OpenFOAM workshop, PennState University; 2011. <http://sourceforge.net/projects/openfoam-extend/files/OpenFOAM_Workshops/OFW6_2011_PennState/Training/clifford_slides.pdf>.
[102] Edwards, D. A.; Brenner, H.; Wasan, D., Interfacial transport processes and rheology, (1991), Butterworth-Heinemann
[103] Bothe, D.; Prüss, J.; Simonett, G., Nonlinear elliptic and parabolic problems, (Well-posedness of a two-phase flow with soluble surfactant, (2005), Birkhäuser), 37-61
[104] Stone, H., A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface, Phys Fluids, 2, 111-112, (1989)
[105] Taylor, R.; Krishna, R., Multicomponent mass transfer, (1993), John Wiley & Sons, Inc
[106] Krishna, R., Multicomponent surface diffusion of adsorbed species: a description based on the generalized Maxwell-Stefan equations, Chem Eng Sci, 45, 1779-1791, (1990)
[107] Sagis, L., The Maxwell-Stefan equations for diffusion in multiphase systems with intersecting divinding surfaces, Physica A, 254, 365-376, (1998)
[108] Bothe D, Dreyer W. Continuum thermodynamics of chemically reacting fluid mixtures; 2014. ArXiv:1401.5991. · Zbl 1317.76082
[109] Kralchevsky, P. A.; Danov, K.; Denkov, N., Handbook of surface and colloid chemistry, (Chemical physics of colloid systems and interfaces, (2009), Taylor & Francis), 197-377
[110] Perot, J.; Nallapati, R., A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows, J Comput Phys, 184, 192-214, (2003) · Zbl 1118.76307
[111] Ferziger, J.; Perić, M., Computational methods for fluid dynamics, (1996), Springer Berlin · Zbl 0869.76003
[112] Jasak, H.; Weller, H.; Gosman, A., High resolution NVD differencing scheme for arbitrarily unstructured meshes, Int J Numer Meth Fluids, 31, 43-449, (1999) · Zbl 0952.76057
[113] Jasak H. Error analysis and estimation for finite volume method with applications to fluid flows. PhD thesis; Imperial College, University of London; 1996.
[114] Bothe D. On the Maxwell-Stefan equations to multicomponent diffusion. In: Guidotti P, CW, et al., editors. Progress in nonlinear differential equations and their applications, vol. 60; 2011. p. 81-93.
[115] Ern, A.; Giovangigli, V., Projected iterative algorithms with application to multicomponent transport, Linear Algebra Appl, 250, 289-315, (1997) · Zbl 0867.65017
[116] Curtis, C.; Hirschfelder, J., Transport properties of multicomponent gas mixtures, J Chem Phys, 17, 550-555, (1949) · Zbl 0039.42806
[117] Keller, H., On the solution of singular and semidefinite linear systems by iteration, SIAM J Numer Anal, 2, 281-290, (1965) · Zbl 0135.37503
[118] Neumann, M.; Plemmons, R., Convergent nonnegative matrices and iterative methods for consistent linear systems, Numer Math, 31, 265-279, (1978) · Zbl 0372.65014
[119] Berman, A.; Plemmons, R., Nonnegative matrices in the mathematical sciences, (1979), Academic Press New York · Zbl 0484.15016
[120] Darwish, M.; Moukalled, F., A compact procedure for discretization of the anisotropic diffusion operator, Numer Heat Transfer B, 55, 339-360, (2009)
[121] Stoyan, G., On maximum principles for monotone matrices, Linear Algebra Appl, 78, 147-161, (1986) · Zbl 0587.15014
[122] Abraham, B.; Plemmons, R., Nonnegative matrices in the mathematical sciences, (Computer science and applied mathematics, (1979), Academic Press), [chapter 6] · Zbl 0484.15016
[123] Droniou J. Finite volume schemes for diffusion equations: introduction to and review of modern methods; 2014. p. 1-46. arXiv preprint arXiv:1407.1567v1. <http://arxiv.org/abs/1407.1567>.
[124] Smooke, M., The computation of laminar flames, Proc Combust Inst, 34, 65-98, (2013)
[125] Jasak, H.; Tuković, Ž, Automatic mesh motion for the unstructured finite volume method, Trans FAMENA, 30, 1-20, (2006)
[126] Freitag L, Knupp P, Munson T, Shontz S. A comparison of optimization software for mesh shape quality improvement problems. In: Proceedings of the 11th international meshing roundtable. Ithaca (NY); 2002.
[127] Knupp, P., Mesh quality improvement for scidac applications, J Phys Conf Ser, 46, 458, (2006)
[128] Quan, S.; Lou, J.; Schmidt, D., Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations, J Comput Phys, 228, 2660-2675, (2009) · Zbl 1275.76174
[129] Mooney K, Menon S, Schmidt DP. A computational study of viscoelastic drop collisions. In: ILASS - Americas 22nd annual conference on liquid atomization and spray systems. Cincinnati, Mai; 2010. p. 117-21.
[130] Samet, H.; Kochut, A., Octree approximation and compression methods, (3DPVT, (2002), IEEE Computer Society), 460-469, ISBN 0-7695-1521-5
[131] Farrell, P., The addition of fields on different meshes, J Comput Phys, 230, 3265-3269, (2011) · Zbl 1218.65024
[132] Eberly, D., 3D game engine design: a practical approach to real-time computer graphics, (2000), Morgan Kaufmann
[133] Alauzet, F.; Mehrenberger, M., P1-conservative solution interpolation on unstructured triangular meshes, Int J Numer Methods Eng, 84, 1552-1558, (2010) · Zbl 1202.76096
[134] Deckelnick, K.; Dziuk, G.; Elliott, C., An h-narrow band finite-element method for elliptic equations on implicit surfaces, IMA J Numer Anal, 30, 351-376, (2010) · Zbl 1191.65151
[135] Aubin, T., Nonlinear analysis on manifolds, (Monge-Ampère Equations, (1982), Springer Berlin)
[136] LeVeque, R., High-resolution conservative algorithms for advection in incompressible flow, SIAM J Numer Anal, 33, 627-665, (1996) · Zbl 0852.76057
[137] Herbin, R.; Hubert, F., Benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Finite volumes for complex applications, (2008), Wiley), 895-930 · Zbl 1246.76053
[138] Arnold, K.; Toor, H., Unsteady diffusion in ternary gas mixtures, AIChE J, 13, 909-914, (1967)
[139] Toor, H., Solution of the linearized equations of multicomponent mass transfer, AIChE J, 10, 448-455, (1964)
[140] Stewart, W.; Prober, R., Matrix calculation of multicomponent mass transfer in isothermal systems, Ind Eng Chem Fund, 3, 224-235, (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.