Cipriano, Fernanda; Didier, Philippe; Guerra, Sílvia Well-posedness of stochastic third grade fluid equation. (English) Zbl 07332796 J. Differ. Equations 285, 496-535 (2021). MSC: 76A05 60H15 76F55 76D03 PDF BibTeX XML Cite \textit{F. Cipriano} et al., J. Differ. Equations 285, 496--535 (2021; Zbl 07332796) Full Text: DOI
Munteanu, Ionuţ Boundary stabilizing actuators for multi-phase fluids in a channel. (English) Zbl 07332789 J. Differ. Equations 285, 175-210 (2021). MSC: 93D15 35K52 35Q35 35K55 76D05 93C20 PDF BibTeX XML Cite \textit{I. Munteanu}, J. Differ. Equations 285, 175--210 (2021; Zbl 07332789) Full Text: DOI
Brzeźniak, Zdzisław; Dhariwal, Gaurav Stochastic constrained Navier-Stokes equations on \(\mathbb{T}^2\). (English) Zbl 07332788 J. Differ. Equations 285, 128-174 (2021). MSC: 60H15 35Q30 76M35 76D03 35R60 PDF BibTeX XML Cite \textit{Z. Brzeźniak} and \textit{G. Dhariwal}, J. Differ. Equations 285, 128--174 (2021; Zbl 07332788) Full Text: DOI
Li, Huanyuan A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three. (English) Zbl 07332688 Appl. Math., Praha 66, No. 1, 43-55 (2021). MSC: 35Q35 76D45 35D35 PDF BibTeX XML Cite \textit{H. Li}, Appl. Math., Praha 66, No. 1, 43--55 (2021; Zbl 07332688) Full Text: DOI
Bonart, Henning; Kahle, Christian Optimal control of sliding droplets using the contact angle distribution. (English) Zbl 07332066 SIAM J. Control Optim. 59, No. 2, 1057-1082 (2021). MSC: 35Q30 35Q35 65K10 76D05 76T99 PDF BibTeX XML Cite \textit{H. Bonart} and \textit{C. Kahle}, SIAM J. Control Optim. 59, No. 2, 1057--1082 (2021; Zbl 07332066) Full Text: DOI
Metzger, Stefan; Knabner, Peter Homogenization of two-phase flow in porous media from pore to Darcy scale: a phase-field approach. (English) Zbl 07331785 Multiscale Model. Simul. 19, No. 1, 320-343 (2021). MSC: 35B27 76S05 76D05 65L60 35G20 35Q35 PDF BibTeX XML Cite \textit{S. Metzger} and \textit{P. Knabner}, Multiscale Model. Simul. 19, No. 1, 320--343 (2021; Zbl 07331785) Full Text: DOI
Hajduk, Karol W.; Robinson, James C.; Sadowski, Witold Robustness of regularity for the 3D convective Brinkman-Forchheimer equations. (English) Zbl 07330900 J. Math. Anal. Appl. 500, No. 1, Article ID 125058, 23 p. (2021). MSC: 35Q35 76S05 76D05 35B65 35B33 35D35 35A02 PDF BibTeX XML Cite \textit{K. W. Hajduk} et al., J. Math. Anal. Appl. 500, No. 1, Article ID 125058, 23 p. (2021; Zbl 07330900) Full Text: DOI
Druet, Pierre-Etienne Global-in-time existence for liquid mixtures subject to a generalised incompressibility constraint. (English) Zbl 07330765 J. Math. Anal. Appl. 499, No. 2, Article ID 125059, 56 p. (2021). MSC: 35Q35 76T30 76D05 76R50 80A50 92E20 PDF BibTeX XML Cite \textit{P.-E. Druet}, J. Math. Anal. Appl. 499, No. 2, Article ID 125059, 56 p. (2021; Zbl 07330765) Full Text: DOI
Ghosh, A.; Kozlov, V. A.; Nazarov, S. A. Modified Reynolds equation for steady flow through a curved pipe. (English) Zbl 07330424 J. Math. Fluid Mech. 23, No. 2, Paper No. 29, 23 p. (2021). MSC: 76D05 76M45 PDF BibTeX XML Cite \textit{A. Ghosh} et al., J. Math. Fluid Mech. 23, No. 2, Paper No. 29, 23 p. (2021; Zbl 07330424) Full Text: DOI
Brizitskii, R. V.; Saritskaia, Zh. Yu. Multiplicative control problems for nonlinear reaction-diffusion-convection model. (English) Zbl 07329776 J. Dyn. Control Syst. 27, No. 2, 379-402 (2021). MSC: 35Q35 76D03 76D55 35B35 35B50 PDF BibTeX XML Cite \textit{R. V. Brizitskii} and \textit{Zh. Yu. Saritskaia}, J. Dyn. Control Syst. 27, No. 2, 379--402 (2021; Zbl 07329776) Full Text: DOI
Muha, Boris; Nečasová, Šárka; Radošević, Ana A uniqueness result for 3D incompressible fluid-rigid body interaction problem. (English) Zbl 07328654 J. Math. Fluid Mech. 23, No. 1, Paper No. 1, 39 p. (2021). MSC: 35Q35 35Q31 74F10 76D03 76D05 35D30 35A01 PDF BibTeX XML Cite \textit{B. Muha} et al., J. Math. Fluid Mech. 23, No. 1, Paper No. 1, 39 p. (2021; Zbl 07328654) Full Text: DOI
Zvyagin, Victor; Turbin, Mikhail Optimal feedback control problem for inhomogeneous Voigt fluid motion model. (English) Zbl 07328294 J. Fixed Point Theory Appl. 23, No. 1, Paper No. 4, 39 p. (2021). MSC: 76D55 76A05 35Q35 49J20 PDF BibTeX XML Cite \textit{V. Zvyagin} and \textit{M. Turbin}, J. Fixed Point Theory Appl. 23, No. 1, Paper No. 4, 39 p. (2021; Zbl 07328294) Full Text: DOI
Danchin, Raphaël; Tan, Jin On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces. (English) Zbl 07324453 Commun. Partial Differ. Equations 46, No. 1, 31-65 (2021). MSC: 35Q35 76D03 86A10 PDF BibTeX XML Cite \textit{R. Danchin} and \textit{J. Tan}, Commun. Partial Differ. Equations 46, No. 1, 31--65 (2021; Zbl 07324453) Full Text: DOI
Yang, Jiaqi Energy conservation for weak solutions of a surface growth model. (English) Zbl 07319889 J. Differ. Equations 283, 71-84 (2021). MSC: 35K25 35K55 76D03 35Q35 35Q30 PDF BibTeX XML Cite \textit{J. Yang}, J. Differ. Equations 283, 71--84 (2021; Zbl 07319889) Full Text: DOI
Arizmendi Gutiérrez, Bárbara; Noce, Alberto Della; Gallia, Mariachiara; Bellosta, Tommaso; Guardone, Alberto Numerical simulation of a thermal ice protection system including state-of-the-art liquid film model. (English) Zbl 07319225 J. Comput. Appl. Math. 391, Article ID 113454, 19 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 80A19 76T10 76A20 76D05 76D08 76M12 80M12 76G25 PDF BibTeX XML Cite \textit{B. Arizmendi Gutiérrez} et al., J. Comput. Appl. Math. 391, Article ID 113454, 19 p. (2021; Zbl 07319225) Full Text: DOI
Baird, Graham; Bürger, Raimund; Méndez, Paul E.; Ruiz-Baier, Ricardo Second-order schemes for axisymmetric Navier-Stokes-Brinkman and transport equations modelling water filters. (English) Zbl 07317385 Numer. Math. 147, No. 2, 431-479 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 76S05 76R50 35A01 35A02 35Q35 35Q49 PDF BibTeX XML Cite \textit{G. Baird} et al., Numer. Math. 147, No. 2, 431--479 (2021; Zbl 07317385) Full Text: DOI
Fan, Lili; Ruan, Lizhi; Xiang, Wei Asymptotic stability of viscous contact wave for the inflow problem of the one-dimensional radiative Euler equations. (English) Zbl 07314939 Discrete Contin. Dyn. Syst. 41, No. 4, 1971-1999 (2021). MSC: 35Q31 35B35 35B40 35M30 35Q35 76N10 76N15 76J20 80A21 PDF BibTeX XML Cite \textit{L. Fan} et al., Discrete Contin. Dyn. Syst. 41, No. 4, 1971--1999 (2021; Zbl 07314939) Full Text: DOI
Zhai, Xiaoping; Li, Yongsheng Global large solutions and optimal time-decay estimates to the Korteweg system. (English) Zbl 07314914 Discrete Contin. Dyn. Syst. 41, No. 3, 1387-1413 (2021). MSC: 35Q35 76N06 35B45 35A01 76D05 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Y. Li}, Discrete Contin. Dyn. Syst. 41, No. 3, 1387--1413 (2021; Zbl 07314914) Full Text: DOI
Zvyagin, V. G.; Zvyagin, A. V.; Nguyen Minh Hong Optimal feedback control for a model of motion of a nonlinearly viscous fluid. (English. Russian original) Zbl 07314334 Differ. Equ. 57, No. 1, 122-126 (2021); translation from Differ. Uravn. 57, No. 1, 135-139 (2021). MSC: 35Q35 76A05 93B52 35A01 PDF BibTeX XML Cite \textit{V. G. Zvyagin} et al., Differ. Equ. 57, No. 1, 122--126 (2021; Zbl 07314334); translation from Differ. Uravn. 57, No. 1, 135--139 (2021) Full Text: DOI
Abbatiello, Anna; Feireisl, Eduard; Novotný, Antoní Generalized solutions to models of compressible viscous fluids. (English) Zbl 07314155 Discrete Contin. Dyn. Syst. 41, No. 1, 1-28 (2021). MSC: 35Q35 35A01 35D30 76N10 PDF BibTeX XML Cite \textit{A. Abbatiello} et al., Discrete Contin. Dyn. Syst. 41, No. 1, 1--28 (2021; Zbl 07314155) Full Text: DOI
The Anh, Cung; Thanh Son, Dang An optimal control problem of the 3D viscous Camassa-Holm equations. (English) Zbl 07313456 Optimization 70, No. 1, 3-25 (2021). MSC: 49J20 49K20 76D55 35Q35 PDF BibTeX XML Cite \textit{C. The Anh} and \textit{D. Thanh Son}, Optimization 70, No. 1, 3--25 (2021; Zbl 07313456) Full Text: DOI
Hadadifard, Fazel; Stefanov, Atanas G. On the forced surface quasi-geostrophic equation: existence of steady states and sharp relaxation rates. (English) Zbl 07312807 J. Math. Fluid Mech. 23, No. 1, Paper No. 24, 28 p. (2021). MSC: 35Q35 35B40 76D03 76B03 76D07 35Q86 86A05 PDF BibTeX XML Cite \textit{F. Hadadifard} and \textit{A. G. Stefanov}, J. Math. Fluid Mech. 23, No. 1, Paper No. 24, 28 p. (2021; Zbl 07312807) Full Text: DOI
Dreyfuss, Pierre; Houamed, Haroune Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation. (English) Zbl 07312802 J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{P. Dreyfuss} and \textit{H. Houamed}, J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021; Zbl 07312802) Full Text: DOI
Aggul, Mustafa; Kaya, Songül Defect-deferred correction method based on a subgrid artificial viscosity model for fluid-fluid interaction. (English) Zbl 07310769 Appl. Numer. Math. 160, 178-191 (2021). MSC: 76M10 76T06 76D27 76D05 65M12 PDF BibTeX XML Cite \textit{M. Aggul} and \textit{S. Kaya}, Appl. Numer. Math. 160, 178--191 (2021; Zbl 07310769) Full Text: DOI
Sun, Xiang; Pan, Xiaomin; Choi, Jung-Il Non-intrusive framework of reduced-order modeling based on proper orthogonal decomposition and polynomial chaos expansion. (English) Zbl 07309640 J. Comput. Appl. Math. 390, Article ID 113372, 23 p. (2021). MSC: 76M35 76D05 76R50 80A19 PDF BibTeX XML Cite \textit{X. Sun} et al., J. Comput. Appl. Math. 390, Article ID 113372, 23 p. (2021; Zbl 07309640) Full Text: DOI
Peng, Yue-Jun Relaxed Euler systems and convergence to Navier-Stokes equations. (English) Zbl 07307586 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 369-401 (2021). MSC: 35Q31 35Q30 35L45 35L60 35L65 35B65 76N06 76D05 PDF BibTeX XML Cite \textit{Y.-J. Peng}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 369--401 (2021; Zbl 07307586) Full Text: DOI
Dolce, Michele; Donatelli, Donatella Artificial compressibility method for the Navier-Stokes-Maxwell-Stefan system. (English) Zbl 07307356 J. Dyn. Differ. Equations 33, No. 1, 35-62 (2021). MSC: 35Q35 76D05 76D99 76N15 35D30 65M22 65M60 65N30 92C30 92C50 PDF BibTeX XML Cite \textit{M. Dolce} and \textit{D. Donatelli}, J. Dyn. Differ. Equations 33, No. 1, 35--62 (2021; Zbl 07307356) Full Text: DOI
Du, Rui; Wang, Yibo Lattice BGK model for time-fractional incompressible Navier-Stokes equations. (English) Zbl 07307178 Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021). MSC: 65M75 76M28 76D05 76P05 35R11 35Q20 35Q35 PDF BibTeX XML Cite \textit{R. Du} and \textit{Y. Wang}, Appl. Math. Lett. 114, Article ID 106911, 9 p. (2021; Zbl 07307178) Full Text: DOI
Jia, Yan; Ye, Hailong Optimal decay rates of weak solutions for the 2D co-rotation FENE dumbbell model of polymeric flows. (English) Zbl 07307156 Appl. Math. Lett. 113, Article ID 106860, 9 p. (2021). MSC: 35Q35 35Q84 76A05 76D05 82D60 82C31 35D30 PDF BibTeX XML Cite \textit{Y. Jia} and \textit{H. Ye}, Appl. Math. Lett. 113, Article ID 106860, 9 p. (2021; Zbl 07307156) Full Text: DOI
An, Rong; Zhang, Chao; Li, Yuan Temporal convergence analysis of an energy preserving projection method for a coupled magnetohydrodynamics equations. (English) Zbl 07305152 J. Comput. Appl. Math. 386, Article ID 113236, 21 p. (2021). MSC: 65M60 65M22 65N30 65M12 65M15 76W05 76D05 35Q61 35Q35 PDF BibTeX XML Cite \textit{R. An} et al., J. Comput. Appl. Math. 386, Article ID 113236, 21 p. (2021; Zbl 07305152) Full Text: DOI
Kadiri, Mostafa; Louaked, Mohammed; Mechkour, Houari Hydrodynamic design optimization using non stationary porous media model. (English) Zbl 07305134 J. Comput. Appl. Math. 386, Article ID 113193, 45 p. (2021). MSC: 35Q35 35B45 76D55 49Q10 65M60 65M06 65N30 65M15 65M12 76M10 76M20 PDF BibTeX XML Cite \textit{M. Kadiri} et al., J. Comput. Appl. Math. 386, Article ID 113193, 45 p. (2021; Zbl 07305134) Full Text: DOI
Lu, Yong; Pokorný, Milan Homogenization of stationary Navier-Stokes-Fourier system in domains with tiny holes. (English) Zbl 07303715 J. Differ. Equations 278, 463-492 (2021). Reviewer: Adrian Muntean (Karlstad) MSC: 35B27 35Q35 76N10 76D05 35Q30 PDF BibTeX XML Cite \textit{Y. Lu} and \textit{M. Pokorný}, J. Differ. Equations 278, 463--492 (2021; Zbl 07303715) Full Text: DOI
Beirão da Veiga, Hugo; Yang, Jiaqi On the partial regularity of suitable weak solutions in the non-Newtonian shear-thinning case. (English) Zbl 07303410 Nonlinearity 34, No. 1, 562-577 (2021). MSC: 35Q35 76A05 76D03 35B65 35D30 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{J. Yang}, Nonlinearity 34, No. 1, 562--577 (2021; Zbl 07303410) Full Text: DOI
Akrivis, Georgios; Li, Buyang; Wang, Jilu Convergence of a second-order energy-decaying method for the viscous rotating shallow water equation. (English) Zbl 07302955 SIAM J. Numer. Anal. 59, No. 1, 265-288 (2021). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N30 65M12 65M15 65H10 35L60 76U05 35Q35 PDF BibTeX XML Cite \textit{G. Akrivis} et al., SIAM J. Numer. Anal. 59, No. 1, 265--288 (2021; Zbl 07302955) Full Text: DOI
Huang, Jiaxi; Jiang, Ning; Luo, Yi-Long; Zhao, Lifeng Small data global regularity for the 3-D Ericksen-Leslie hyperbolic liquid crystal model without kinematic transport. (English) Zbl 07302463 SIAM J. Math. Anal. 53, No. 1, 530-573 (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q35 76A15 35M30 35L52 76D03 82D15 82D25 35B35 35B65 PDF BibTeX XML Cite \textit{J. Huang} et al., SIAM J. Math. Anal. 53, No. 1, 530--573 (2021; Zbl 07302463) Full Text: DOI
Čanić, Sunčica Moving boundary problems. (English) Zbl 07301375 Bull. Am. Math. Soc., New Ser. 58, No. 1, 79-106 (2021). MSC: 74F10 76D05 76D03 76D27 PDF BibTeX XML Cite \textit{S. Čanić}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 79--106 (2021; Zbl 07301375) Full Text: DOI
Buckmaster, Tristan; Vicol, Vlad Convex integration constructions in hydrodynamics. (English) Zbl 07301372 Bull. Am. Math. Soc., New Ser. 58, No. 1, 1-44 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q35 35Q30 35Q31 76D05 76W05 35D30 PDF BibTeX XML Cite \textit{T. Buckmaster} and \textit{V. Vicol}, Bull. Am. Math. Soc., New Ser. 58, No. 1, 1--44 (2021; Zbl 07301372) Full Text: DOI
Ren, Xiaoxia; Xiang, Zhaoyin Low regularity well-posedness for the 3D viscous non-resistive MHD system with internal surface wave. (English) Zbl 07299350 J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021). MSC: 35Q35 76W05 35A01 35A02 35D35 35B65 PDF BibTeX XML Cite \textit{X. Ren} and \textit{Z. Xiang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 14, 34 p. (2021; Zbl 07299350) Full Text: DOI
Miura, Tatsu-Hiko Navier-Stokes equations in a curved thin domain. II: Global existence of a strong solution. (English) Zbl 07299343 J. Math. Fluid Mech. 23, No. 1, Paper No. 7, 60 p. (2021). MSC: 35Q30 76D03 76D05 76A20 35D35 35A01 PDF BibTeX XML Cite \textit{T.-H. Miura}, J. Math. Fluid Mech. 23, No. 1, Paper No. 7, 60 p. (2021; Zbl 07299343) Full Text: DOI
Lee, Chaeyoung; Kim, Hyundong; Yoon, Sungha; Kim, Sangkwon; Lee, Dongsun; Park, Jinate; Kwak, Soobin; Yang, Junxiang; Wang, Jian; Kim, Junseok An unconditionally stable scheme for the Allen-Cahn equation with high-order polynomial free energy. (English) Zbl 07299052 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021). MSC: 65M06 65M55 65D05 76D05 35Q35 PDF BibTeX XML Cite \textit{C. Lee} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105658, 19 p. (2021; Zbl 07299052) Full Text: DOI
Xiao, Zhicheng; Yu, Peixiang; Ouyang, Hua; Zhang, Jiajing A parallel high-order compact scheme for the pure streamfunction formulation of the 3D unsteady incompressible Navier-Stokes equation. (English) Zbl 1455.76137 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021). MSC: 76M20 76D05 65M12 65Y05 PDF BibTeX XML Cite \textit{Z. Xiao} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105631, 21 p. (2021; Zbl 1455.76137) Full Text: DOI
Zhang, Qiuyu; Li, Jian; Huang, Pengzhan Recovery type a posteriori error estimates for the conduction convection problem. (English) Zbl 07298629 Numer. Algorithms 86, No. 1, 425-441 (2021). MSC: 65N30 65N15 65N50 80A19 76D05 35Q35 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Numer. Algorithms 86, No. 1, 425--441 (2021; Zbl 07298629) Full Text: DOI
Ma, Liangliang Stability of hydrostatic equilibrium for the 2D magnetic Bénard fluid equations with mixed partial dissipation, magnetic diffusion and thermal diffusivity. (English) Zbl 07298438 Z. Angew. Math. Phys. 72, No. 1, Paper No. 1, 7 p. (2021). MSC: 35Q35 76W05 76R10 76D03 35B35 PDF BibTeX XML Cite \textit{L. Ma}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 1, 7 p. (2021; Zbl 07298438) Full Text: DOI
Granero-Belinchón, Rafael; Scrobogna, Stefano Well-posedness of the water-wave with viscosity problem. (English) Zbl 07297746 J. Differ. Equations 276, 96-148 (2021). MSC: 35Q35 76D05 35R35 35Q55 35A01 35A02 35L25 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} and \textit{S. Scrobogna}, J. Differ. Equations 276, 96--148 (2021; Zbl 07297746) Full Text: DOI
Zhai, Xiaoping; Chen, Yiren Global solutions and large time behavior for the chemotaxis-shallow water system. (English) Zbl 07291341 J. Differ. Equations 275, 332-358 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 35Q92 76D99 35B40 92C17 PDF BibTeX XML Cite \textit{X. Zhai} and \textit{Y. Chen}, J. Differ. Equations 275, 332--358 (2021; Zbl 07291341) Full Text: DOI
Mohammadi, Reza Numerical approximation for viscous Cahn-Hilliard equation via septic B-spline. (English) Zbl 1454.65063 Appl. Anal. 100, No. 1, 93-115 (2021). MSC: 65M06 65D07 65N35 65M12 65M15 35Q35 76M20 PDF BibTeX XML Cite \textit{R. Mohammadi}, Appl. Anal. 100, No. 1, 93--115 (2021; Zbl 1454.65063) Full Text: DOI
Wu, Jiahong; Zhu, Yi Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. (English) Zbl 1455.35207 Adv. Math. 377, Article ID 107466, 27 p. (2021). MSC: 35Q35 76W05 76D05 76E25 76D03 35A01 35A02 35B35 35B65 PDF BibTeX XML Cite \textit{J. Wu} and \textit{Y. Zhu}, Adv. Math. 377, Article ID 107466, 27 p. (2021; Zbl 1455.35207) Full Text: DOI
Zhang, Qian; Zheng, Xiaoxin Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source. (English) Zbl 07289112 J. Differ. Equations 274, 576-612 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q35 35Q92 35K55 92C17 35B40 76D05 35B07 35A02 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{X. Zheng}, J. Differ. Equations 274, 576--612 (2021; Zbl 07289112) Full Text: DOI
Liu, Lvqiao; Tan, Jin Global well-posedness for the Hall-magnetohydrodynamics system in larger critical Besov spaces. (English) Zbl 1454.35291 J. Differ. Equations 274, 382-413 (2021). MSC: 35Q35 76D03 76W05 35B35 35A01 35A02 86A10 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Tan}, J. Differ. Equations 274, 382--413 (2021; Zbl 1454.35291) Full Text: DOI
Li, Ming-Jian Interaction between free surface flow and moving bodies with a dynamic mesh and interface geometric reconstruction approach. (English) Zbl 07288736 Comput. Math. Appl. 81, 649-663 (2021). MSC: 76M99 76T30 76D05 76D27 PDF BibTeX XML Cite \textit{M.-J. Li}, Comput. Math. Appl. 81, 649--663 (2021; Zbl 07288736) Full Text: DOI
Yu, Haibo Global strong solutions to the 3D viscous liquid-gas two-phase flow model. (English) Zbl 1455.35208 J. Differ. Equations 272, 732-759 (2021). MSC: 35Q35 35B45 76N10 76T10 35D30 PDF BibTeX XML Cite \textit{H. Yu}, J. Differ. Equations 272, 732--759 (2021; Zbl 1455.35208) Full Text: DOI
Shen, Lin; Wang, Shu; Yang, Rong Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model. (English) Zbl 1454.35261 J. Differ. Equations 272, 473-543 (2021). MSC: 35Q30 74F10 76D03 76D05 76W05 35D35 PDF BibTeX XML Cite \textit{L. Shen} et al., J. Differ. Equations 272, 473--543 (2021; Zbl 1454.35261) Full Text: DOI
Feng, Zefu; Zhang, Mei Boundedness and large time behavior of solutions to a prey-taxis system accounting in liquid surrounding. (English) Zbl 1455.35192 Nonlinear Anal., Real World Appl. 57, Article ID 103197, 24 p. (2021). MSC: 35Q35 76D05 76Z99 92D25 35A01 35B40 PDF BibTeX XML Cite \textit{Z. Feng} and \textit{M. Zhang}, Nonlinear Anal., Real World Appl. 57, Article ID 103197, 24 p. (2021; Zbl 1455.35192) Full Text: DOI
Choi, Young-Pil; Lee, Jaeseung; Yun, Seok-Bae Strong solutions to the inhomogeneous Navier-Stokes-BGK system. (English) Zbl 1455.35170 Nonlinear Anal., Real World Appl. 57, Article ID 103196, 33 p. (2021). MSC: 35Q30 35Q20 35D35 35B65 35A01 76P05 76D05 PDF BibTeX XML Cite \textit{Y.-P. Choi} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103196, 33 p. (2021; Zbl 1455.35170) Full Text: DOI
Lai, Suhua; Wu, Jiahong; Zhong, Yueyuan Stability and large-time behavior of the 2D Boussinesq equations with partial dissipation. (English) Zbl 1454.35288 J. Differ. Equations 271, 764-796 (2021). MSC: 35Q35 35Q86 76D03 76D50 35B40 35B35 86A05 86A10 76R10 PDF BibTeX XML Cite \textit{S. Lai} et al., J. Differ. Equations 271, 764--796 (2021; Zbl 1454.35288) Full Text: DOI
Matsui, Tatsuya; Nakasato, Ryosuke; Ogawa, Takayoshi Singular limit for the magnetohydrodynamics of the damped wave type in the critical Fourier-Sobolev space. (English) Zbl 1455.35201 J. Differ. Equations 271, 414-446 (2021). MSC: 35Q35 35Q60 76W05 76D05 35K05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{T. Matsui} et al., J. Differ. Equations 271, 414--446 (2021; Zbl 1455.35201) Full Text: DOI
Koike, Kai Long-time behavior of a point mass in a one-dimensional viscous compressible fluid and pointwise estimates of solutions. (English) Zbl 1455.35196 J. Differ. Equations 271, 356-413 (2021). MSC: 35Q35 76N06 74F10 35A08 PDF BibTeX XML Cite \textit{K. Koike}, J. Differ. Equations 271, 356--413 (2021; Zbl 1455.35196) Full Text: DOI
Ye, Zhuan Global well-posedness for a model of 2D temperature-dependent Boussinesq equations without diffusivity. (English) Zbl 1454.35308 J. Differ. Equations 271, 107-127 (2021). MSC: 35Q35 35B65 76D03 35A01 35A02 PDF BibTeX XML Cite \textit{Z. Ye}, J. Differ. Equations 271, 107--127 (2021; Zbl 1454.35308) Full Text: DOI
Wang, Shu; Wang, Yongxin; Liu, Jitao Regularity criteria to the incompressible axisymmetric Boussinesq equations. (English) Zbl 1454.35304 Appl. Math. Lett. 112, Article ID 106800, 7 p. (2021). MSC: 35Q35 76D05 35B65 35B45 35B07 35D30 PDF BibTeX XML Cite \textit{S. Wang} et al., Appl. Math. Lett. 112, Article ID 106800, 7 p. (2021; Zbl 1454.35304) Full Text: DOI
Savina, T. V. On a two-fluid Hele-Shaw problem with an elliptical interface. (English) Zbl 1451.35138 J. Differ. Equations 270, 787-808 (2021). MSC: 35Q35 76D27 76T06 76D45 35B40 PDF BibTeX XML Cite \textit{T. V. Savina}, J. Differ. Equations 270, 787--808 (2021; Zbl 1451.35138) Full Text: DOI
Flandoli, Franco; Luo, Dejun Point vortex approximation for 2D Navier-Stokes equations driven by space-time white noise. (English) Zbl 1452.76054 J. Math. Anal. Appl. 493, No. 2, Article ID 124560, 21 p. (2021). MSC: 76D06 76D17 76M35 35Q30 PDF BibTeX XML Cite \textit{F. Flandoli} and \textit{D. Luo}, J. Math. Anal. Appl. 493, No. 2, Article ID 124560, 21 p. (2021; Zbl 1452.76054) Full Text: DOI
Zhai, Xiaoping On some large solutions to the damped Boussinesq system. (English) Zbl 07258395 Appl. Math. Lett. 111, Article ID 106621, 6 p. (2021). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q35 76D03 42B25 PDF BibTeX XML Cite \textit{X. Zhai}, Appl. Math. Lett. 111, Article ID 106621, 6 p. (2021; Zbl 07258395) Full Text: DOI
Ali, Rizwan; Asjad, Muhammad Imran; Akgül, Ali An analysis of a mathematical fractional model of hybrid viscous nanofluids and its application in heat and mass transfer. (English) Zbl 1453.35144 J. Comput. Appl. Math. 383, Article ID 113096, 17 p. (2021). Reviewer: Aleksey Syromyasov (Saransk) MSC: 35Q35 35R11 26A33 80A19 76T20 76A05 44A10 PDF BibTeX XML Cite \textit{R. Ali} et al., J. Comput. Appl. Math. 383, Article ID 113096, 17 p. (2021; Zbl 1453.35144) Full Text: DOI
Gbadeyan, Jacob A.; Abubakar, J. U.; Oyekunle, T. L. Effects of Navier slip on a steady flow of an incompressible viscous fluid confined within spirally enhanced channel. (English) Zbl 07329943 J. Egypt. Math. Soc. 28, Paper No. 32, 24 p. (2020). MSC: 76W05 76M99 76D05 76A10 65N99 PDF BibTeX XML Cite \textit{J. A. Gbadeyan} et al., J. Egypt. Math. Soc. 28, Paper No. 32, 24 p. (2020; Zbl 07329943) Full Text: DOI
Alam, M. Mahbub; Pinfield, Valerie J.; Maréchal, Pierre Scattering coefficients for a sphere in a visco-acoustic medium for arbitrary partial wave order. (English) Zbl 07328359 Wave Motion 97, Article ID 102589, 8 p. (2020). MSC: 35 74 PDF BibTeX XML Cite \textit{M. M. Alam} et al., Wave Motion 97, Article ID 102589, 8 p. (2020; Zbl 07328359) Full Text: DOI
Zhong, Xin The local well-posedness to the density-dependent magnetic Bénard system with nonnegative density. (English) Zbl 07327468 Commun. Math. Sci. 18, No. 3, 725-750 (2020). MSC: 35Q35 76D03 76R10 76W05 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{X. Zhong}, Commun. Math. Sci. 18, No. 3, 725--750 (2020; Zbl 07327468) Full Text: DOI
Metzger, Stefan On a novel approach for modeling liquid crystalline flows. (English) Zbl 07327453 Commun. Math. Sci. 18, No. 2, 359-378 (2020). MSC: 35Q35 35Q30 35Q84 35A15 35D30 76A05 76A15 76D03 76D05 PDF BibTeX XML Cite \textit{S. Metzger}, Commun. Math. Sci. 18, No. 2, 359--378 (2020; Zbl 07327453) Full Text: DOI
Huang, Pengzhan; He, Yinnian An Uzawa-type algorithm for the coupled Stokes equations. (English) Zbl 07327126 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 7, 1095-1104 (2020). MSC: 76D05 76M10 65N12 PDF BibTeX XML Cite \textit{P. Huang} and \textit{Y. He}, AMM, Appl. Math. Mech., Engl. Ed. 41, No. 7, 1095--1104 (2020; Zbl 07327126) Full Text: DOI
Liu, Yang; Zhong, Xin On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum. (English) Zbl 07326933 Commun. Pure Appl. Anal. 19, No. 11, 5219-5238 (2020). MSC: 35Q35 35D35 76A15 76D03 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{X. Zhong}, Commun. Pure Appl. Anal. 19, No. 11, 5219--5238 (2020; Zbl 07326933) Full Text: DOI
Han, Bin; Zhao, Na Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics system. (English) Zbl 07326900 Commun. Pure Appl. Anal. 19, No. 9, 4455-4478 (2020). MSC: 35Q35 76D03 76W05 35B44 35B65 42B25 PDF BibTeX XML Cite \textit{B. Han} and \textit{N. Zhao}, Commun. Pure Appl. Anal. 19, No. 9, 4455--4478 (2020; Zbl 07326900) Full Text: DOI
Mohan, Manil Thankamani Dynamic programming and feedback analysis of the two dimensional tidal dynamics system. (English) Zbl 07323771 ESAIM, Control Optim. Calc. Var. 26, Paper No. 109, 43 p. (2020). MSC: 49L20 49L25 35F21 35Q35 76D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 109, 43 p. (2020; Zbl 07323771) Full Text: DOI
Hishida, Toshiaki; Silvestre, Ana Leonor; Takahashi, Takéo Optimal boundary control for steady motions of a self-propelled body in a Navier-Stokes liquid. (English) Zbl 07323754 ESAIM, Control Optim. Calc. Var. 26, Paper No. 92, 42 p. (2020). MSC: 76D55 76D05 76U05 76M30 35Q30 PDF BibTeX XML Cite \textit{T. Hishida} et al., ESAIM, Control Optim. Calc. Var. 26, Paper No. 92, 42 p. (2020; Zbl 07323754) Full Text: DOI
Arora, Manisha; Singh, Jitender; Bajaj, Renu Nonlinear stability of natural convection in an inclined fluid layer. (English) Zbl 07322686 Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 21, 15 p. (2020). MSC: 76E06 76D55 PDF BibTeX XML Cite \textit{M. Arora} et al., Int. J. Appl. Comput. Math. 6, No. 1, Paper No. 21, 15 p. (2020; Zbl 07322686) Full Text: DOI
Zhang, Yue; Yin, Mengtian; Baek, Yongmin; Lee, Kyusang; Zangari, Giovanni; Cai, Liheng; Xu, Baoxing Capillary transfer of soft films. (English) Zbl 07321271 Proc. Natl. Acad. Sci. USA 117, No. 10, 5210-5216 (2020). MSC: 76A20 76D45 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Proc. Natl. Acad. Sci. USA 117, No. 10, 5210--5216 (2020; Zbl 07321271) Full Text: DOI
Zhang, Jun; Chen, Chuanjun; Wang, Jiangxing; Yang, Xiaofeng Efficient, second oder accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system. (English) Zbl 07319470 Comput. Phys. Commun. 251, Article ID 107122, 15 p. (2020). MSC: 76E09 76D05 PDF BibTeX XML Cite \textit{J. Zhang} et al., Comput. Phys. Commun. 251, Article ID 107122, 15 p. (2020; Zbl 07319470) Full Text: DOI
Zvyagin, Viktor Grigor’evich; Zvyagin, Andreĭ Viktorovich; Hong, Nguyen Minh Optimal feedback control for one motion model of a nonlinearly viscous fluid. (Russian. English summary) Zbl 07319002 Chebyshevskiĭ Sb. 21, No. 2(74), 144-158 (2020). MSC: 76D55 35Q35 49J20 93B52 PDF BibTeX XML Cite \textit{V. G. Zvyagin} et al., Chebyshevskiĭ Sb. 21, No. 2(74), 144--158 (2020; Zbl 07319002) Full Text: DOI MNR
Proskurin, A. V. Stability of a pressure-driven flow between coaxial cylinders in a longitudinal magnetic field. (English. Russian original) Zbl 1454.76109 J. Appl. Mech. Tech. Phys. 61, No. 6, 917-924 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 6, 16-23 (2020). MSC: 76W05 76E25 PDF BibTeX XML Cite \textit{A. V. Proskurin}, J. Appl. Mech. Tech. Phys. 61, No. 6, 917--924 (2020; Zbl 1454.76109); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 6, 16--23 (2020) Full Text: DOI
Arnaudon, Marc; Cruzeiro, Ana Bela; Léonard, Christian; Zambrini, Jean-Claude An entropic interpolation problem for incompressible viscous fluids. (English. French summary) Zbl 07310522 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 3, 2211-2235 (2020). MSC: 76D03 76M30 49Q20 49S05 35Q35 PDF BibTeX XML Cite \textit{M. Arnaudon} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 3, 2211--2235 (2020; Zbl 07310522) Full Text: DOI Euclid
Tsvetkov, D. O. On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid. (English. Russian original) Zbl 07309117 Russ. Math. 64, No. 8, 50-63 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 8, 59-73 (2020). MSC: 76D50 76D03 76D05 74F10 35Q30 PDF BibTeX XML Cite \textit{D. O. Tsvetkov}, Russ. Math. 64, No. 8, 50--63 (2020; Zbl 07309117); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 8, 59--73 (2020) Full Text: DOI
Jang, Deok-Kyu; Kim, Taek-Cheol; Pyo, Jae-Hong The stability of Gauge-Uzawa method to solve nanofluid. (English) Zbl 1453.65270 J. Korean Soc. Ind. Appl. Math. 24, No. 2, 121-141 (2020). MSC: 65M12 65M60 76D05 35Q35 PDF BibTeX XML Cite \textit{D.-K. Jang} et al., J. Korean Soc. Ind. Appl. Math. 24, No. 2, 121--141 (2020; Zbl 1453.65270) Full Text: DOI
Biswas, Tania; Dharmatti, Sheetal; Mohan, Manil T. Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hilliard-Navier-Stokes equations. (English) Zbl 07307901 Analysis, München 40, No. 3, 127-150 (2020). MSC: 49J20 49K20 35Q30 35Q35 76D03 PDF BibTeX XML Cite \textit{T. Biswas} et al., Analysis, München 40, No. 3, 127--150 (2020; Zbl 07307901) Full Text: DOI
Qin, Yizhao; Yao, Peng-Fei Energy decay and global solutions for a damped free boundary fluid-elastic structure interface model with variable coefficients in elasticity. (English) Zbl 07304801 Appl. Anal. 99, No. 11, 1953-1971 (2020). MSC: 49K20 35Q30 76D05 PDF BibTeX XML Cite \textit{Y. Qin} and \textit{P.-F. Yao}, Appl. Anal. 99, No. 11, 1953--1971 (2020; Zbl 07304801) Full Text: DOI
Li, Zhouyu; Liu, Pan; Niu, Pengcheng Remarks on Liouville type theorems for the 3D stationary MHD equations. (English) Zbl 07304225 Bull. Korean Math. Soc. 57, No. 5, 1151-1164 (2020). MSC: 35Q35 35B65 35B53 76W05 76D05 PDF BibTeX XML Cite \textit{Z. Li} et al., Bull. Korean Math. Soc. 57, No. 5, 1151--1164 (2020; Zbl 07304225) Full Text: DOI
Luo, Li; Cai, Xiao-Chuan; Yan, Zhengzheng; Xu, Lei; Keyes, David E. A multilayer nonlinear elimination preconditioned inexact Newton method for steady-state incompressible flow problems in three dimensions. (English) Zbl 07303415 SIAM J. Sci. Comput. 42, No. 6, B1404-B1428 (2020). MSC: 76M99 76D05 65N12 65N55 65Y05 PDF BibTeX XML Cite \textit{L. Luo} et al., SIAM J. Sci. Comput. 42, No. 6, B1404--B1428 (2020; Zbl 07303415) Full Text: DOI
Kwon, Chunsong; Tartakovsky, Daniel M. Modified immersed boundary method for flows over randomly rough surfaces. (English) Zbl 1453.76035 J. Comput. Phys. 406, Article ID 109195, 16 p. (2020). MSC: 76D05 76M20 35R60 65M06 76D07 PDF BibTeX XML Cite \textit{C. Kwon} and \textit{D. M. Tartakovsky}, J. Comput. Phys. 406, Article ID 109195, 16 p. (2020; Zbl 1453.76035) Full Text: DOI
Huang, Ziyang; Lin, Guang; Ardekani, Arezoo M. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows. (English) Zbl 1453.76131 J. Comput. Phys. 406, Article ID 109192, 44 p. (2020). MSC: 76M20 76T10 76D05 PDF BibTeX XML Cite \textit{Z. Huang} et al., J. Comput. Phys. 406, Article ID 109192, 44 p. (2020; Zbl 1453.76131) Full Text: DOI
Wen, H. L.; Yu, C. H.; Sheu, Tony W. H. On the development of LS-assisted VOF method for incompressible interfacial flows. (English) Zbl 1453.76216 J. Comput. Phys. 406, Article ID 109188, 35 p. (2020). MSC: 76T10 76M20 76D05 PDF BibTeX XML Cite \textit{H. L. Wen} et al., J. Comput. Phys. 406, Article ID 109188, 35 p. (2020; Zbl 1453.76216) Full Text: DOI
Dalmon, Alexis; Kentheswaran, Kalyani; Mialhe, Guillaume; Lalanne, Benjamin; Tanguy, Sébastien Fluids-membrane interaction with a full Eulerian approach based on the level set method. (English) Zbl 1453.76125 J. Comput. Phys. 406, Article ID 109171, 32 p. (2020). MSC: 76M20 74S20 76T06 74K15 74F10 76D45 76D07 PDF BibTeX XML Cite \textit{A. Dalmon} et al., J. Comput. Phys. 406, Article ID 109171, 32 p. (2020; Zbl 1453.76125) Full Text: DOI
Zhu, Guangpu; Kou, Jisheng; Yao, Jun; Li, Aifen; Sun, Shuyu A phase-field moving contact line model with soluble surfactants. (English) Zbl 1453.76146 J. Comput. Phys. 405, Article ID 109170, 29 p. (2020). MSC: 76M20 76D05 76T06 76D45 65M06 65Z05 65M12 PDF BibTeX XML Cite \textit{G. Zhu} et al., J. Comput. Phys. 405, Article ID 109170, 29 p. (2020; Zbl 1453.76146) Full Text: DOI
Chi, Cheng; Abdelsamie, Abouelmagd; Thévenin, Dominique A directional ghost-cell immersed boundary method for incompressible flows. (English) Zbl 1453.76123 J. Comput. Phys. 404, Article ID 109122, 20 p. (2020). MSC: 76M20 76D05 PDF BibTeX XML Cite \textit{C. Chi} et al., J. Comput. Phys. 404, Article ID 109122, 20 p. (2020; Zbl 1453.76123) Full Text: DOI
Perot, J. Blair; Sanchez-Rocha, Martin; Malan, Paul A fractional-step method for steady-state flow. (English) Zbl 1453.76106 J. Comput. Phys. 403, Article ID 109057, 19 p. (2020). MSC: 76M12 76D05 76M10 PDF BibTeX XML Cite \textit{J. B. Perot} et al., J. Comput. Phys. 403, Article ID 109057, 19 p. (2020; Zbl 1453.76106) Full Text: DOI
O’Brien, Adam; Bussmann, Markus A moving immersed boundary method for simulating particle interactions at fluid-fluid interfaces. (English) Zbl 1453.76036 J. Comput. Phys. 402, Article ID 109089, 17 p. (2020). MSC: 76D05 76D45 76T20 76M12 PDF BibTeX XML Cite \textit{A. O'Brien} and \textit{M. Bussmann}, J. Comput. Phys. 402, Article ID 109089, 17 p. (2020; Zbl 1453.76036) Full Text: DOI
Xie, Bin; Jin, Peng; Nakayama, Hiroki; Liao, ShiJun; Xiao, Feng A conservative solver for surface-tension-driven multiphase flows on collocated unstructured grids. (English) Zbl 1453.76116 J. Comput. Phys. 401, Article ID 109025, 33 p. (2020). MSC: 76M12 76T10 76T06 76D05 65M08 PDF BibTeX XML Cite \textit{B. Xie} et al., J. Comput. Phys. 401, Article ID 109025, 33 p. (2020; Zbl 1453.76116) Full Text: DOI
Liu, Y. Y.; Shu, C.; Zhang, H. W.; Yang, L. M. A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids. (English) Zbl 1453.76168 J. Comput. Phys. 401, Article ID 109019, 23 p. (2020). MSC: 76M28 76M12 76M20 65M06 65M08 76D05 PDF BibTeX XML Cite \textit{Y. Y. Liu} et al., J. Comput. Phys. 401, Article ID 109019, 23 p. (2020; Zbl 1453.76168) Full Text: DOI
Nishikawa, Hiroaki A face-area-weighted ‘centroid’ formula for finite-volume method that improves skewness and convergence on triangular grids. (English) Zbl 1453.65258 J. Comput. Phys. 401, Article ID 109001, 26 p. (2020). MSC: 65M08 65M50 76M12 PDF BibTeX XML Cite \textit{H. Nishikawa}, J. Comput. Phys. 401, Article ID 109001, 26 p. (2020; Zbl 1453.65258) Full Text: DOI
Liu, Chen; Frank, Florian; Thiele, Christopher; Alpak, Faruk O.; Berg, Steffen; Chapman, Walter; Riviere, Beatrice An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media. (English) Zbl 1453.76078 J. Comput. Phys. 400, Article ID 108948, 17 p. (2020). MSC: 76M10 76S05 76T06 76D45 65M60 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Comput. Phys. 400, Article ID 108948, 17 p. (2020; Zbl 1453.76078) Full Text: DOI
Kolahdouz, Ebrahim M.; Bhalla, Amneet Pal Singh; Craven, Brent A.; Griffith, Boyce E. An immersed interface method for discrete surfaces. (English) Zbl 1453.76075 J. Comput. Phys. 400, Article ID 108854, 37 p. (2020). MSC: 76M10 76D05 76Z05 76M20 PDF BibTeX XML Cite \textit{E. M. Kolahdouz} et al., J. Comput. Phys. 400, Article ID 108854, 37 p. (2020; Zbl 1453.76075) Full Text: DOI
Hassine, Maatoug; Hrizi, Mourad; Malek, Rakia A non-iterative reconstruction method for an inverse problem modeled by a Stokes-Brinkmann equations. (English) Zbl 07301062 J. Korean Math. Soc. 57, No. 5, 1079-1101 (2020). MSC: 65M32 76D55 76D05 76S05 76M21 49Q10 65K10 PDF BibTeX XML Cite \textit{M. Hassine} et al., J. Korean Math. Soc. 57, No. 5, 1079--1101 (2020; Zbl 07301062) Full Text: DOI
Qiu, Hua; Yao, Zheng-An The regularized Boussinesq equations with partial dissipations in dimension two. (English) Zbl 07300748 Electron Res. Arch. 28, No. 4, 1375-1393 (2020). MSC: 35Q35 76D03 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{H. Qiu} and \textit{Z.-A. Yao}, Electron Res. Arch. 28, No. 4, 1375--1393 (2020; Zbl 07300748) Full Text: DOI
Chen, Wenbin; Han, Daozhi; Wang, Xiaoming; Zhang, Yichao Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq system. (English) Zbl 07299270 J. Sci. Comput. 85, No. 2, Paper No. 45, 27 p. (2020). MSC: 35Q35 35Q79 35K61 76T06 76S05 76D07 76D05 76R10 35K05 35B35 PDF BibTeX XML Cite \textit{W. Chen} et al., J. Sci. Comput. 85, No. 2, Paper No. 45, 27 p. (2020; Zbl 07299270) Full Text: DOI