×

On automated analysis of flow patterns in cerebral aneurysms based on vortex identification. (English) Zbl 1168.76393

Summary: It is hypothesized that the risk of rupture of cerebral aneurysms is related to geometrical and mechanical properties of the arterial wall as well as to local hemodynamics. In order to gain better understanding of the hemodynamical factors involved in intra-aneurysmal flows, a thorough analysis of the 3D velocity field within an idealized geometry is needed. This includes the identification and quantification of features like vortices and stagnation regions. The aim of our research is to develop experimentally validated computational methods to analyse intra-aneurysmal vortex patterns and, eventually, define candidate hemodynamical parameters (e.g. vortex strength) that could be predictive for rupture risk. A computational model based on a standard Galerkin finite-element approximation and an Euler implicit time integration has been applied to compute the velocity field in an idealized aneurysm geometry and the results have been compared to Particle Image Velocimetry (PIV) measurements in an in vitro model. In order to analyze the vortices observed in the aneurysmal sac, the vortex identification scheme as proposed by J. Jeong and F. Hussain [J. Fluid Mech. 285, 69–94 (1995; Zbl 0847.76007)] is applied. The 3D intra-aneurysmal velocity fields reveal complex vortical structures. This study indicates that the computational method predicts well the vortex structure that is found in the in vitro model and that a 3D analysis method like the vortex identification as proposed is needed to fully understand and quantify the vortex dynamics of intra-aneurysmal flow. Furthermore, such an automated analysis method would allow the definition of parameters predictive for rupture in clinical practice.

MSC:

76Z05 Physiological flows
76D05 Navier-Stokes equations for incompressible viscous fluids
92C35 Physiological flow

Citations:

Zbl 0847.76007

Software:

SEPRAN; Gpiv
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mizoi K, Yoshimoto T, Nagamine Y et al (1995) How to treat incidental cerebral aneurysms: a review of 139 consecutive cases. Surg Neurol 44: 114–121 · doi:10.1016/0090-3019(95)00035-6
[2] Krex D, Schackert HK, Schackert G et al (2001) Genesis of cerebral aneurysms–an update. Acta Neurochir 143: 429–449 · doi:10.1007/s007010170072
[3] Mitchell P, Birchall D, Mendelow D (2006) Blood pressure, fatigue, and the pathogenisis of aneurysmal subarachnoid hemorrhage. Surg Neurol 66: 574–580 · doi:10.1016/j.surneu.2006.06.063
[4] Juvela S, Poussa K, Porras M (2001) Factors affecting formation and growth of intracranial aneurysms: a long term follow up study. Stroke 32: 485–491
[5] van Gijn J, Rinkel GJE (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124: 249–278 · doi:10.1093/brain/124.2.249
[6] Cebral JR, Castro MA, Burgess JE et al (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 26: 2550–2559
[7] Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am J Neuroradiol 27: 1703–1709
[8] Cebral JR, Castro MA, Appanaboyina S et al (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24(4): 457–467 · doi:10.1109/TMI.2005.844159
[9] Malek A, Izumo S (1995) Control of endothelial cell gene expression by flow. J Biomech 28(12): 1515–1528 · doi:10.1016/0021-9290(95)00099-2
[10] Wentzel J, Gijsen F, Stergiopulos N et al (2003) Shear stress, vascular remodeling and neointimal formation. J Biomech 36: 681–688 · doi:10.1016/S0021-9290(02)00446-3
[11] Friedman MH, Fry DL (1993) Arterial permeability dynamics and vascular disease. Atherosclerosis 104: 189–194 · doi:10.1016/0021-9150(93)90190-6
[12] Beck J, Rohde S, Berkefeld J et al (2006) Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg Neurol 65: 18–27 · doi:10.1016/j.surneu.2005.05.019
[13] Dickley P, Kailasnath P (2002) The diameter-cube hypothesis: a new biophysical model of aneurysm rupture. Surg Neurol 58: 166–180 · doi:10.1016/S0090-3019(02)00848-0
[14] Ohashi Y, Horikoshi T, Sugita M et al (2004) Size of cerebral aneurysms and related factors in patients with subarachnoid hemorrhage. Surg Neurol 61: 239–247 · doi:10.1016/S0090-3019(03)00427-0
[15] Liou TM, Liou SN (1999) A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc Natl Sci Counc ROC (B) 23: 133–148
[16] Steinman DA (2002) Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 30: 483–497 · doi:10.1114/1.1467679
[17] Chatziprodromou I, Tricoli A, Poulikakos D et al (2007) Heamodynamics and wall remodelling of a growing cerebral aneurysm: a computational model. J Biomech 40: 412–426 · doi:10.1016/j.jbiomech.2005.12.009
[18] Cebral JR, Pergolizzi RS, Putman CM (2007) Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad Radiol 14(7): 804–813 · doi:10.1016/j.acra.2007.03.008
[19] Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285: 69–94 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[20] Castro MA, Putman CM, Cebral JR (2006) Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3d rotational angiography images. Acad Radiol 13(7): 811–821 · doi:10.1016/j.acra.2006.03.011
[21] Castro MA, Putman CM, Cebral JR (2006) Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am J Neuroradiol 27: 2061–2068
[22] Parlea L, Fahrig R, Holdsworth DH et al (1999) An analysis of the geometry of saccular intracranial aneurysms. AJNR Am J Neuroradiol 20: 1079–1089
[23] Liou TM, Liou SN (2004) Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel. Exp Mech 44: 253–160 · doi:10.1007/BF02427891
[24] Narracott A, Lawford P, Liu H et al (2003) Development of a model for the investigation of blood clotting in cerebral aneurysms following coiling. In: Proc Int Congr Comput Bioeng, Zaragosa, September 24–26, 2003
[25] Rudin S, Wang Z, Kyprianou I et al (2003) Imaging stent-induced flow modification in cerebro-vascular aneurysms with X-ray micro-angiography. In: IEEE Int Symp Biomed Imaging, Washington DC, July 7–10, 2002
[26] Segal A (2006) Sepran user manual and programmers guide. Ingenieursbureau Sepra, Leidschendam
[27] van der Graaf G (2007) Gpiv, open source software for particle image velocimetry. http://gpiv.sourceforge.net/ . Accessed 15 Dec 2008
[28] Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16(3-4): 236–247 · doi:10.1007/BF00206543
[29] Shinneeb AM, Bugg JD, Balachandar R (2004) Variable threshold outlier identification in piv data. Meas Sci Technol 15: 1722–1732 · doi:10.1088/0957-0233/15/9/008
[30] Meyer FJH, Riederer S (1993) Pulsatile increase in aneurysm size determined by cine phase-contrast mr angiography. J Neurosurg 78: 879–883 · doi:10.3171/jns.1993.78.6.0879
[31] Dean WR (1927) Note on the motion of fluid in a curved pipe. Philos Mag 4(20): 208–222 · JFM 54.0909.05
[32] Dean WR (1928) The stream-line motion of fluid in a curved pipe. Philos Mag 5(30): 673–695
[33] van de Vosse FN, de Hart J, van Oijen CHGA et al (2003) Finite-element-based computational methods for cardiovascular fluid–structure interaction. J Eng Math 47: 335–368 · Zbl 1057.74047 · doi:10.1023/B:ENGI.0000007985.17625.43
[34] Banks DC, Singer BA (1995) A predictor-corrector technique for visualizing unsteady flow. IEEE Trans Vis Comput Graph 1(2): 151–163 · Zbl 05108250 · doi:10.1109/2945.468404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.