×

Microwave photonics with superconducting quantum circuits. (English) Zbl 1377.82052

Summary: In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
82D55 Statistical mechanics of superconductors
81V10 Electromagnetic interaction; quantum electrodynamics
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81Q37 Quantum dots, waveguides, ratchets, etc.
81V80 Quantum optics

Software:

QuTiP; SimAn
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Haroche, S.; Raimond, J.-M., Exploring the Quantum: Atoms, Cavities, and Photons (2006), OUP Oxford · Zbl 1118.81001
[2] (Vahala, K., Optical Microcavities. Optical Microcavities, Advanced Series in Applied Physics, vol. 5 (2004), World Scientific)
[3] Nakamura, Y.; Pashkin, Y. A.; Tsai, J. S., Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature, 398, 786 (1999)
[4] You, J. Q.; Nori, F., Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B, 68, 064509 (2003)
[5] Wallraff, A.; Schuster, D. I.; Blais, A.; Frunzio, L.; Huang, R.-S.; Majer, J.; Kumar, S.; Girvin, S. M.; Schoelkopf, R. J., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, 431, 162 (2004)
[6] Blais, A.; Huang, R.-S.; Wallraff, A.; Girvin, S. M.; Schoelkopf, R. J., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A, 69, 062320 (2004)
[7] Martinis, J. M.; Devoret, M. H.; Clarke, J., Energy-level quantization in the zero-voltage state of a current-biased Josephson junction, Phys. Rev. Lett., 55, 1543 (1985)
[8] Makhlin, Y.; Schön, G.; Shnirman, A., Quantum-state engineering with Josephson-junction devices, Rev. Modern Phys., 73, 357 (2001)
[9] Devoret, M. H.; Martinis, J. M., Implementing qubits with superconducting integrated circuits, Quantum Inf. Process., 3, 163 (2004) · Zbl 1075.68599
[10] You, J. Q.; Nori, F., Superconducting circuits and quantum information, Phys. Today, 58, 11, 42 (2005)
[11] G. Wendin, V.S. Shumeiko, Superconducting Quantum Circuits, Qubits and Computing, 2005. arXiv:cond-mat/0508729; G. Wendin, V.S. Shumeiko, Superconducting Quantum Circuits, Qubits and Computing, 2005. arXiv:cond-mat/0508729
[12] Wendin, G.; Shumeiko, V. S., Quantum bits with Josephson junctions, Low Temp. Phys., 33, 724 (2007)
[13] (Flatté, M. E.; Tifrea, I., Manipulating Quantum Coherence in Solid State Systems. Manipulating Quantum Coherence in Solid State Systems, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 244 (2007), Springer, Netherlands: Springer, Netherlands Dordrecht)
[14] Zagoskin, A.; Blais, A., Superconducting qubits, Phys. Canada, 63, 215 (2007)
[15] Clarke, J.; Wilhelm, F. K., Superconducting quantum bits, Nature, 453, 1031 (2008)
[16] Schoelkopf, R. J.; Girvin, S. M., Wiring up quantum systems, Nature, 451, 664 (2008)
[17] Girvin, S. M.; Devoret, M. H.; Schoelkopf, R. J., Circuit QED and engineering charge-based superconducting qubits, Phys. Scr. T, 137, 014012 (2009)
[18] Martinis, J. M., Superconducting phase qubits, Quantum Inf. Process., 8, 81 (2009)
[19] You, J. Q.; Nori, F., Atomic physics and quantum optics using superconducting circuits, Nature, 474, 589 (2011)
[20] Buluta, I.; Ashhab, S.; Nori, F., Natural and artificial atoms for quantum computation, Rep. Progr. Phys., 74, 104401 (2011)
[21] Siddiqi, I., Superconducting qubits: poised for computing?, Supercond. Sci. Technol., 24, 091002 (2011)
[22] Zagoskin, A. M., Quantum Engineering: Theory and Design of Quantum Coherent Structures (2011), Cambridge University Press · Zbl 1254.81003
[23] Oliver, W. D.; Welander, P. B., Materials in superconducting quantum bits, MRS Bull., 38, 816 (2013)
[24] N.K. Langford, Circuit QED - Lecture Notes, 2013. arXiv:1310.1897; N.K. Langford, Circuit QED - Lecture Notes, 2013. arXiv:1310.1897
[25] Xiang, Z.-L.; Ashhab, S.; You, J. Q.; Nori, F., Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Modern Phys., 85, 623 (2013)
[26] Devoret, M. H.; Schoelkopf, R. J., Superconducting Circuits for Quantum Information: An Outlook, Science, 339, 1169 (2013)
[27] (Devoret, M.; Huard, B.; Schoelkopf, R.; Cugliandolo, L. F., Quantum Machines: Measurement and Control of Engineered Quantum Systems (2014), Oxford University Press) · Zbl 1290.81005
[28] Josephson, B. D., Possible new effects in superconductive tunnelling, Phys. Lett., 1, 251 (1962) · Zbl 0103.23703
[29] Gerry, C. C.; Knight, P. L., Introductory Quantum Optics (2005), Cambridge University Press
[30] Bouchiat, V.; Vion, D.; Joyez, P.; Esteve, D.; Devoret, M. H., Quantum coherence with a single cooper pair, Phys. Scr. T, 76, 165 (1998)
[31] Pashkin, Y. A.; Astafiev, O.; Yamamoto, T.; Nakamura, Y.; Tsai, J. S., Josephson charge qubits: a brief review, Quantum Inf. Process., 8, 55 (2009)
[32] Mooij, J. E.; Orlando, T. P.; Levitov, L.; Tian, L.; van der Wal, C. H.; Lloyd, S., Josephson persistent-current qubit, Science, 285, 1036 (1999)
[33] van der Wal, C. H.; ter Haar, A. C.J.; Wilhelm, F. K.; Schouten, R. N.; Harmans, C. J.P. M.; Orlando, T. P.; Lloyd, S.; Mooij, J. E., Quantum superposition of macroscopic persistent-current states, Science, 290, 773 (2000)
[34] Friedman, J. R.; Patel, V.; Chen, W.; Tolpygo, S. K.; Lukens, J. E., Quantum superposition of distinct macroscopic states, Nature, 406, 43 (2000)
[35] Chiorescu, I.; Nakamura, Y.; Harmans, C. J.P. M.; Mooij, J. E., Coherent quantum dynamics of a superconducting flux qubit, Science, 299, 1869 (2003)
[36] Orlando, T. P.; Mooij, J. E.; Tian, L.; van der Wal, C. H.; Levitov, L. S.; Lloyd, S.; Mazo, J. J., Superconducting persistent-current qubit, Phys. Rev. B, 60, 15398 (1999)
[37] Leggett, A. J., Macroscopic quantum systems and the quantum theory of measurement, Progr. Theoret. Phys. Suppl., 69, 80 (1980)
[38] Chiorescu, I.; Bertet, P.; Semba, K.; Nakamura, Y.; Harmans, C. J.P. M.; Mooij, J. E., Coherent dynamics of a flux qubit coupled to a harmonic oscillator, Nature, 431, 159 (2004)
[39] Liu, Y.-X.; You, J. Q.; Wei, L. F.; Sun, C. P.; Nori, F., Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett., 95, 087001 (2005)
[40] Clarke, J.; Cleland, A. N.; Devoret, M. H.; Esteve, D.; Martinis, J. M., Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction, Science, 239, 992 (1988)
[41] Ramos, R.; Gubrud, M.; Berkley, A.; Anderson, J.; Lobb, C.; Wellstood, F., Design for effective thermalization of junctions for quantum coherence, IEEE Trans. Appl. Supercond., 11, 998 (2001)
[42] Martinis, J. M.; Nam, S.; Aumentado, J.; Urbina, C., Rabi oscillations in a large Josephson-junction qubit, Phys. Rev. Lett., 89, 117901 (2002)
[43] Yu, Y.; Han, S.; Chu, X.; Chu, S.-I.; Wang, Z., Coherent temporal oscillations of macroscopic quantum states in a Josephson junction, Science, 296, 889 (2002)
[44] Vion, D.; Aassime, A.; Cottet, A.; Joyez, P.; Pothier, H.; Urbina, C.; Esteve, D.; Devoret, M. H., Manipulating the quantum state of an electrical circuit, Science, 296, 886 (2002)
[45] Cottet, A.; Vion, D.; Aassime, A.; Joyez, P.; Esteve, D.; Devoret, M., Implementation of a combined charge-phase quantum bit in a superconducting circuit, Phys. C Supercond., 367, 197 (2002)
[46] You, J. Q.; Hu, X.; Ashhab, S.; Nori, F., Low-decoherence flux qubit, Phys. Rev. B, 75, 140515 (2007)
[47] Steffen, M.; Kumar, S.; DiVincenzo, D. P.; Rozen, J. R.; Keefe, G. A.; Rothwell, M. B.; Ketchen, M. B., High-coherence hybrid superconducting qubit, Phys. Rev. Lett., 105, 100502 (2010)
[48] Yan, F.; Gustavsson, S.; Kamal, A.; Birenbaum, J.; Sears, A. P.; Hover, D.; Gudmundsen, T. J.; Rosenberg, D.; Samach, G.; Weber, S.; Yoder, J. L.; Orlando, T. P.; Clarke, J.; Kerman, A. J.; Oliver, W. D., The flux qubit revisited to enhance coherence and reproducibility, Nature Commun., 7, 12964 (2016)
[49] Steffen, M.; Ansmann, M.; McDermott, R.; Katz, N.; Bialczak, R. C.; Lucero, E.; Neeley, M.; Weig, E. M.; Cleland, A. N.; Martinis, J. M., State tomography of capacitively shunted phase qubits with high fidelity, Phys. Rev. Lett., 97, 50502 (2006)
[50] Bertet, P.; Chiorescu, I.; Burkard, G.; Semba, K.; Harmans, C. J.P. M.; DiVincenzo, D. P.; Mooij, J. E., Dephasing of a superconducting qubit induced by photon noise, Phys. Rev. Lett., 95, 257002 (2005)
[51] Yoshihara, F.; Harrabi, K.; Niskanen, A. O.; Nakamura, Y.; Tsai, J. S., Decoherence of flux qubits due to \(1 / f\) flux noise, Phys. Rev. Lett., 97, 167001 (2006)
[52] Gustavsson, S.; Bylander, J.; Yan, F.; Forn-Díaz, P.; Bolkhovsky, V.; Braje, D.; Fitch, G.; Harrabi, K.; Lennon, D.; Miloshi, J.; Murphy, P.; Slattery, R.; Spector, S.; Turek, B.; Weir, T.; Welander, P. B.; Yoshihara, F.; Cory, D. G.; Nakamura, Y.; Orlando, T. P.; Oliver, W. D., Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator, Phys. Rev. Lett., 108, 170503 (2012)
[53] Yan, F.; Gustavsson, S.; Bylander, J.; Jin, X.; Yoshihara, F.; Cory, D. G.; Nakamura, Y.; Orlando, T. P.; Oliver, W. D., Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution, Nature Commun., 4, 2337 (2013)
[54] Stern, M.; Catelani, G.; Kubo, Y.; Grezes, C.; Bienfait, A.; Vion, D.; Esteve, D.; Bertet, P., Flux qubits with long coherence times for hybrid quantum circuits, Phys. Rev. Lett., 113, 123601 (2014)
[55] Qiu, Y.; Xiong, W.; He, X.-L.; Li, T.-F.; You, J. Q., Four-junction superconducting circuit, Sci. Rep., 6, 28622 (2016)
[56] Paauw, F. G.; Fedorov, A.; Harmans, C. J.P. M.; Mooij, J. E., Tuning the gap of a superconducting flux qubit, Phys. Rev. Lett., 102, 090501 (2009)
[57] Zhu, X.; Kemp, A.; Saito, S.; Semba, K., Coherent operation of a gap-tunable flux qubit, Appl. Phys. Lett., 97, 102503 (2010)
[58] Schwarz, M. J.; Goetz, J.; Jiang, Z.; Niemczyk, T.; Deppe, F.; Marx, A.; Gross, R., Gradiometric flux qubits with a tunable gap, New J. Phys., 15, 045001 (2013)
[59] Koch, J.; Yu, T. M.; Gambetta, J.; Houck, A. A.; Schuster, D. I.; Majer, J.; Blais, A.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, 76, 042319 (2007)
[60] Manucharyan, V. E.; Koch, J.; Glazman, L. I.; Devoret, M. H., Fluxonium: Single cooper-pair circuit free of charge offsets, Science, 326, 113 (2009)
[61] Pop, I. M.; Geerlings, K.; Catelani, G.; Schoelkopf, R. J.; Glazman, L. I.; Devoret, M. H., Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles, Nature, 508, 369 (2014)
[62] Barends, R.; Kelly, J.; Megrant, A.; Sank, D.; Jeffrey, E.; Chen, Y.; Yin, Y.; Chiaro, B.; Mutus, J.; Neill, C.; O’Malley, P.; Roushan, P.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, J. M., Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett., 111, 080502 (2013)
[63] Chen, Y.; Neill, C.; Roushan, P.; Leung, N.; Fang, M.; Barends, R.; Kelly, J.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Megrant, A.; Mutus, J. Y.; O’Malley, P. J.J.; Quintana, C. M.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Geller, M. R.; Cleland, A. N.; Martinis, J. M., Qubit architecture with high coherence and fast tunable coupling, Phys. Rev. Lett., 113, 220502 (2014)
[64] Geller, M. R.; Donate, E.; Chen, Y.; Fang, M. T.; Leung, N.; Neill, C.; Roushan, P.; Martinis, J. M., Tunable coupler for superconducting Xmon qubits: Perturbative nonlinear model, Phys. Rev. A, 92, 012320 (2015)
[65] Larsen, T. W.; Petersson, K. D.; Kuemmeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M., Semiconductor-nanowire-based superconducting qubit, Phys. Rev. Lett., 115, 127001 (2015)
[66] de Lange, G.; van Heck, B.; Bruno, A.; van Woerkom, D. J.; Geresdi, A.; Plissard, S. R.; Bakkers, E. P.A. M.; Akhmerov, A. R.; DiCarlo, L., Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements, Phys. Rev. Lett., 115, 127002 (2015)
[67] Zagoskin, A. M.; Chipouline, A.; Il’ichev, E.; Johansson, J. R.; Nori, F., Toroidal qubits: naturally-decoupled quiet artificial atoms, Sci. Rep., 5, 16934 (2015)
[68] Cohen-Tannoudji, C.; Diu, B.; Laloe, F., Quantum Mechanics (1991), Wiley
[69] Deppe, F.; Mariantoni, M.; Menzel, E. P.; Marx, A.; Saito, S.; Kakuyanagi, K.; Tanaka, H.; Meno, T.; Semba, K.; Takayanagi, H.; Solano, E.; Gross, R., Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED, Nat. Phys., 4, 686 (2008)
[70] You, J. Q.; Liu, Y.-X.; Sun, C. P.; Nori, F., Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit, Phys. Rev. B, 75, 104516 (2007)
[71] Astafiev, O.; Inomata, K.; Niskanen, A. O.; Yamamoto, T.; Pashkin, Y. A.; Nakamura, Y.; Tsai, J. S., Single artificial-atom lasing, Nature, 449, 588 (2007)
[72] Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, F., Single-artificial-atom lasing using a voltage-biased superconducting charge qubit, New J. Phys., 11, 023030 (2009)
[73] Joo, J.; Bourassa, J.; Blais, A.; Sanders, B. C., Electromagnetically Induced Transparency with Amplification in Superconducting Circuits, Phys. Rev. Lett., 105, 073601 (2010)
[74] Jia, W. Z.; Wei, L. F., Gains without inversion in quantum systems with broken parities, Phys. Rev. A, 82, 013808 (2010)
[75] You, J. Q.; Liu, Y.-X.; Nori, F., Simultaneous cooling of an artificial atom and its neighboring quantum system, Phys. Rev. Lett., 100, 047001 (2008)
[76] Sun, H.-C.; Liu, Y.-X.; Ian, H.; You, J. Q.; Il’ichev, E.; Nori, F., Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits, Phys. Rev. A, 89, 063822 (2014)
[77] Marquardt, F., Efficient on-chip source of microwave photon pairs in superconducting circuit QED, Phys. Rev. B, 76, 205416 (2007)
[78] Koshino, K., Down-conversion of a single photon with unit efficiency, Phys. Rev. A, 79, 13804 (2009)
[79] Sánchez-Burillo, E.; Martín-Moreno, L.; García-Ripoll, J. J.; Zueco, D., Full two-photon down-conversion of a single photon, Phys. Rev. A, 94, 53814 (2016)
[80] Liu, Y.-X.; Sun, H.-C.; Peng, Z. H.; Miranowicz, A.; Tsai, J. S.; Nori, F., Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit, Sci. Rep., 4, 7289 (2014)
[81] Zhou, L.; Yang, L.-P.; Li, Y.; Sun, C. P., Quantum routing of single photons with a cyclic three-level System, Phys. Rev. Lett., 111, 103604 (2013)
[82] Peng, Z. H.; Liu, Y.-X.; Peltonen, J. T.; Yamamoto, T.; Tsai, J. S.; Astafiev, O., Correlated emission lasing in Harmonic oscillators coupled via a single three-level artificial atom, Phys. Rev. Lett., 115, 223603 (2015)
[83] Niemczyk, T.; Deppe, F.; Mariantoni, M.; Menzel, E. P.; Hoffmann, E.; Wild, G.; Eggenstein, L.; Marx, A.; Gross, R., Fabrication technology of and symmetry breaking in superconducting quantum circuits, Supercond. Sci. Technol., 22, 20 (2009)
[84] Srinivasan, S. J.; Hoffman, A. J.; Gambetta, J. M.; Houck, A. A., Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-Shaped energy level diagram, Phys. Rev. Lett., 106, 083601 (2011)
[85] Yang, C.-P.; Chu, S.-I.; Han, S., Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter, Phys. Rev. Lett., 92, 117902 (2004)
[86] Liu, Y.-X.; Wei, L. F.; Nori, F., Generation of nonclassical photon states using a superconducting qubit in a microcavity, Europhys. Lett., 67, 941 (2004)
[87] Liu, Y.-X.; Wei, L. F.; Nori, F., Tomographic measurements on superconducting qubit states, Phys. Rev. B, 72, 14547 (2005)
[88] Katz, N.; Neeley, M.; Ansmann, M.; Bialczak, R.; Hofheinz, M.; Lucero, E.; O’Connell, A.; Wang, H.; Cleland, A.; Martinis, J.; Korotkov, A., Reversal of the weak measurement of a quantum state in a superconducting phase qubit, Phys. Rev. Lett., 101, 200401 (2008)
[89] Neeley, M.; Ansmann, M.; Bialczak, R. C.; Hofheinz, M.; Katz, N.; Lucero, E.; O’Connell, A.; Wang, H.; Cleland, A. N.; Martinis, J. M., Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys., 4, 523 (2008)
[90] Filipp, S.; Maurer, P.; Leek, P. J.; Baur, M.; Bianchetti, R.; Fink, J. M.; Göppl, M.; Steffen, L.; Gambetta, J. M.; Blais, A.; Wallraff, A., Two-qubit state tomography using a joint dispersive readout, Phys. Rev. Lett., 102, 200402 (2009)
[91] Houck, A. A.; Schuster, D. I.; Gambetta, J. M.; Schreier, J. A.; Johnson, B. R.; Chow, J. M.; Frunzio, L.; Majer, J.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Generating single microwave photons in a circuit, Nature, 449, 328 (2007)
[92] Hofheinz, M.; Wang, H.; Ansmann, M.; Bialczak, R. C.; Lucero, E.; Neeley, M.; O’Connell, A. D.; Sank, D.; Wenner, J.; Martinis, J. M.; Cleland, A. N., Synthesizing arbitrary quantum states in a superconducting resonator, Nature, 459, 546 (2009)
[93] Mallet, F.; Castellanos-Beltran, M. A.; Ku, H. S.; Glancy, S.; Knill, E.; Irwin, K. D.; Hilton, G. C.; Vale, L. R.; Lehnert, K. W., Quantum state tomography of an itinerant squeezed microwave field, Phys. Rev. Lett., 106, 220502 (2011)
[94] Eichler, C.; Bozyigit, D.; Lang, C.; Steffen, L.; Fink, J.; Wallraff, A., Experimental state tomography of itinerant single microwave photons, Phys. Rev. Lett., 106, 220503 (2011)
[95] Johnson, B. R.; Reed, M. D.; Houck, A. A.; Schuster, D. I.; Bishop, L. S.; Ginossar, E.; Gambetta, J. M.; DiCarlo, L.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J., Quantum non-demolition detection of single microwave photons in a circuit, Nat. Phys., 6, 663 (2010)
[96] Lupaşcu, A.; Verwijs, C. J.M.; Schouten, R. N.; Harmans, C. J.P. M.; Mooij, J. E., Nondestructive readout for a superconducting flux qubit, Phys. Rev. Lett., 93, 177006 (2004)
[97] Siddiqi, I.; Vijay, R.; Metcalfe, M.; Boaknin, E.; Frunzio, L.; Schoelkopf, R.; Devoret, M., Dispersive measurements of superconducting qubit coherence with a fast latching readout, Phys. Rev. B, 73, 054510 (2006)
[98] Lupaşcu, A.; Driessen, E. F.C.; Roschier, L.; Harmans, C. J.P. M.; Mooij, J. E., High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator, Phys. Rev. Lett., 96, 127003 (2006)
[99] Lupaşcu, A.; Saito, S.; Picot, T.; de Groot, P. C.; Harmans, C. J.P. M.; Mooij, J. E., Quantum non-demolition measurement of a superconducting two-level system, Nat. Phys., 3, 119 (2007)
[100] Il’ichev, E.; Oukhanski, N.; Izmalkov, A.; Wagner, T.; Grajcar, M.; Meyer, H.-G.; Smirnov, A. Y.; Maassen van den Brink, A.; Amin, M. H.S.; Zagoskin, A. M., Continuous monitoring of rabi oscillations in a Josephson flux qubit, Phys. Rev. Lett., 91, 097906 (2003)
[101] Ashhab, S.; Nori, F., Control-free control: Manipulating a quantum system using only a limited set of measurements, Phys. Rev. A, 82, 062103 (2010)
[102] Siddiqi, I.; Vijay, R.; Pierre, F.; Wilson, C. M.; Metcalfe, M.; Rigetti, C.; Frunzio, L.; Devoret, M. H., RF-driven Josephson bifurcation amplifier for quantum measurement, Phys. Rev. Lett., 93, 207002 (2004)
[103] Vijay, R.; Devoret, M. H.; Siddiqi, I., Invited review article: The Josephson bifurcation amplifier, Rev. Sci. Instrum., 80, 111101 (2009)
[104] Bergeal, N.; Vijay, R.; Manucharyan, V. E.; Siddiqi, I.; Schoelkopf, R. J.; Girvin, S. M.; Devoret, M. H., Analog information processing at the quantum limit with a Josephson ring modulator, Nat. Phys., 6, 296 (2010)
[105] Vijay, R.; Slichter, D. H.; Siddiqi, I., Observation of quantum jumps in a superconducting artificial atom, Phys. Rev. Lett., 106, 110502 (2011)
[106] Tan, D.; Weber, S. J.; Siddiqi, I.; Mølmer, K.; Murch, K. W., Prediction and retrodiction for a continuously monitored superconducting qubit, Phys. Rev. Lett., 114, 090403 (2015)
[107] Aharonov, Y.; Albert, D. Z.; Vaidman, L., How the result of a measurement of a component of the spin of a spin- 1/2 particle can turn out to be 100, Phys. Rev. Lett., 60, 1351 (1988)
[108] Kofman, A. G.; Ashhab, S.; Nori, F., Nonperturbative theory of weak pre- and post-selected measurements, Phys. Rep., 520, 43 (2012)
[109] Cooper, K. B.; Steffen, M.; McDermott, R.; Simmonds, R. W.; Oh, S.; Hite, D. A.; Pappas, D. P.; Martinis, J. M., Observation of quantum oscillations between a josephson phase qubit and a microscopic resonator using fast readout, Phys. Rev. Lett., 93, 180401 (2004)
[110] Astafiev, O.; Pashkin, Y. A.; Yamamoto, T.; Nakamura, Y.; Tsai, J. S., Single-shot measurement of the Josephson charge qubit, Phys. Rev. B, 69, 180507 (2004)
[111] Lupaşcu, A.; Harmans, C. J.P. M.; Mooij, J. E., Quantum state detection of a superconducting flux qubit using a dc-SQUID in the inductive mode, Phys. Rev. B, 71, 184506 (2005)
[112] Mallet, F.; Ong, F. R.; Palacios-Laloy, A.; Nguyen, F.; Bertet, P.; Vion, D.; Esteve, D., Single-shot qubit readout in circuit quantum electrodynamics, Nat. Phys., 5, 791 (2010)
[113] Chow, J. M.; DiCarlo, L.; Gambetta, J. M.; Nunnenkamp, A.; Bishop, L. S.; Frunzio, L.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Detecting highly entangled states with a joint qubit readout, Phys. Rev. A, 81, 062325 (2010)
[114] Reed, M. D.; DiCarlo, L.; Johnson, B. R.; Sun, L.; Schuster, D. I.; Frunzio, L.; Schoelkopf, R. J., High-fidelity readout in circuit quantum electrodynamics using the Jaynes-cummings nonlinearity, Phys. Rev. Lett., 105, 173601 (2010)
[115] Sete, E. A.; Galiautdinov, A.; Mlinar, E.; Martinis, J. M.; Korotkov, A. N., Catch-disperse-release readout for superconducting qubits, Phys. Rev. Lett., 110, 210501 (2013)
[116] Sun, L.; Petrenko, A.; Leghtas, Z.; Vlastakis, B.; Kirchmair, G.; Sliwa, K. M.; Narla, A.; Hatridge, M.; Shankar, S.; Blumoff, J.; Frunzio, L.; Mirrahimi, M.; Devoret, M. H.; Schoelkopf, R. J., Tracking photon jumps with repeated quantum non-demolition parity measurements, Nature, 511, 444 (2014)
[117] Pozar, D. M., Microwave Engineering (2011), John Wiley & Sons, Inc.
[118] Astafiev, O.; Zagoskin, A. M.; Abdumalikov, A. A.; Pashkin, Y. A.; Yamamoto, T.; Inomata, K.; Nakamura, Y.; Tsai, J. S., Resonance fluorescence of a single artificial atom, Science, 327, 840 (2010)
[119] Frunzio, L.; Wallraff, A.; Schuster, D.; Majer, J.; Schoelkopf, R., Fabrication and characterization of superconducting circuit QED devices for quantum computation, IEEE Trans. Appl. Supercond., 15, 860 (2005)
[120] Göppl, M.; Fragner, A.; Baur, M.; Bianchetti, R.; Filipp, S.; Fink, J. M.; Leek, P. J.; Puebla, G.; Steffen, L.; Wallraff, A., Coplanar waveguide resonators for circuit quantum electrodynamics, J. Appl. Phys., 104, 113904 (2008)
[121] Megrant, A.; Neill, C.; Barends, R.; Chiaro, B.; Chen, Y.; Feigl, L.; Kelly, J.; Lucero, E.; Mariantoni, M.; O’Malley, P. J.J.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Yin, Y.; Zhao, J.; Palmstrom, C. J.; Martinis, J. M.; Cleland, A. N., Planar superconducting resonators with internal quality factors above one million, Appl. Phys. Lett., 100, 113510 (2012)
[122] Collin, R. E., Foundations for Microwave Engineering (2001), Wiley-IEEE Press
[123] Wallquist, M.; Shumeiko, V.; Wendin, G., Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity, Phys. Rev. B, 74, 224506 (2006)
[124] Palacios-Laloy, A.; Nguyen, F.; Mallet, F.; Bertet, P.; Vion, D.; Esteve, D., Tunable resonators for quantum circuits, J. Low Temp. Phys., 151, 1034 (2008)
[125] Yamamoto, T.; Inomata, K.; Watanabe, M.; Matsuba, K.; Miyazaki, T.; Oliver, W. D.; Nakamura, Y.; Tsai, J. S., Flux-driven Josephson parametric amplifier, Appl. Phys. Lett., 93, 042510 (2008)
[126] Sandberg, M.; Wilson, C. M.; Persson, F.; Bauch, T.; Johansson, G.; Shumeiko, V.; Duty, T.; Delsing, P., Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett., 92, 203501 (2008)
[127] Sandberg, M.; Wilson, C. M.; Persson, F.; Johansson, G.; Shumeiko, V.; Bauch, T.; Duty, T.; Delsing, P., Fast tuning of superconducting microwave cavities, AIP Conf. Proc., 1074, 12 (2008)
[128] Wang, Z. L.; Zhong, Y. P.; He, L. J.; Wang, H.; Martinis, J. M.; Cleland, A. N.; Xie, Q. W., Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett., 102, 163503 (2013)
[129] Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Chaudhuri, S.; Bockstiegel, C.; Gao, J., Frequency-tunable superconducting resonators via nonlinear kinetic inductance, Appl. Phys. Lett., 107, 062601 (2015)
[130] Moore, G. T., Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity, J. Math. Phys., 11, 2679 (1970)
[131] Johansson, J. R.; Johansson, G.; Wilson, C. M.; Nori, F., Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett., 103, 147003 (2009)
[132] Johansson, J. R.; Johansson, G.; Wilson, C. M.; Nori, F., Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A, 82, 52509 (2010)
[133] Johansson, J. R.; Johansson, G.; Wilson, C. M.; Delsing, P.; Nori, F., Nonclassical microwave radiation from the dynamical Casimir effect, Phys. Rev. A, 87, 43804 (2013)
[134] Wilson, C. M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J. R.; Duty, T.; Nori, F.; Delsing, P., Observation of the dynamical Casimir effect in a superconducting circuit, Nature, 479, 376 (2011)
[135] Nation, P. D.; Johansson, J. R.; Blencowe, M. P.; Nori, F., Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Modern Phys., 84, 1 (2012)
[136] Lindkvist, J.; Sabiń, C.; Fuentes, I.; Dragan, A.; Svensson, I.-M.; Delsing, P.; Johansson, G., Twin paradox with macroscopic clocks in superconducting circuits, Phys. Rev. A, 90, 052113 (2014)
[137] Felicetti, S.; Sanz, M.; Lamata, L.; Romero, G.; Johansson, G.; Delsing, P.; Solano, E., Dynamical casimir effect entangles artificial atoms, Phys. Rev. Lett., 113, 093602 (2014)
[138] Chirolli, L.; Burkard, G.; Kumar, S.; DiVincenzo, D. P., Superconducting resonators as beam splitters for linear-optics quantum computation, Phys. Rev. Lett., 104, 230502 (2010)
[139] Zakka-Bajjani, E.; Nguyen, F.; Lee, M.; Vale, L. R.; Simmonds, R. W.; Aumentado, J., Quantum superposition of a single microwave photon in two different ‘colour’ states, Nat. Phys., 7, 599 (2011)
[140] Nguyen, F.; Zakka-Bajjani, E.; Simmonds, R. W.; Aumentado, J., Quantum interference between two single photons of different microwave frequencies, Phys. Rev. Lett., 108, 163602 (2012)
[141] Schmidt, S.; Koch, J., Circuit QED lattices: Towards quantum simulation with superconducting circuits, Ann. Phys., 525, 395 (2013)
[142] Mariantoni, M.; Deppe, F.; Marx, A.; Gross, R.; Wilhelm, F. K.; Solano, E., Two-resonator circuit quantum electrodynamics: A superconducting quantum switch, Phys. Rev. B, 78, 104508 (2008)
[143] Reuther, G. M.; Zueco, D.; Deppe, F.; Hoffmann, E.; Menzel, E. P.; Weißl, T.; Mariantoni, M.; Kohler, S.; Marx, A.; Solano, E.; Gross, R.; Hänggi, P., Two-resonator circuit quantum electrodynamics: Dissipative theory, Phys. Rev. B, 81, 144510 (2010)
[144] Baust, A.; Hoffmann, E.; Haeberlein, M.; Schwarz, M. J.; Eder, P.; Goetz, J.; Wulschner, F.; Xie, E.; Zhong, L.; Quijandría, F.; Peropadre, B.; Zueco, D.; García Ripoll, J.-J.; Solano, E.; Fedorov, K.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R., Tunable and switchable coupling between two superconducting resonators, Phys. Rev. B, 91, 014515 (2015)
[145] Peropadre, B.; Zueco, D.; Wulschner, F.; Deppe, F.; Marx, A.; Gross, R.; García-Ripoll, J. J., Tunable coupling engineering between superconducting resonators: From sidebands to effective gauge fields, Phys. Rev. B, 87, 134504 (2013)
[146] Wulschner, F.; Goetz, J.; Koessel, F. R.; Hoffmann, E.; Baust, A.; Eder, P.; Fischer, M.; Haeberlein, M.; Schwarz, M. J.; Pernpeintner, M.; Xie, E.; Zhong, L.; Zollitsch, C. W.; Peropadre, B.; Garcia Ripoll, J.-J.; Solano, E.; Fedorov, K. G.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R., Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID, EPJ Quantum Technol., 3, 10 (2016)
[147] Koch, J.; Houck, A. A.; Le Hur, K.; Girvin, S. M., Time-reversal-symmetry breaking in circuit-QED-based photon lattices, Phys. Rev. A, 82, 043811 (2010)
[148] Houck, A. A.; Türeci, H. E.; Koch, J., On-chip quantum simulation with superconducting circuits, Nat. Phys., 8, 292 (2012)
[149] Anderson, B. M.; Ma, R.; Owens, C.; Schuster, D. I.; Simon, J., Engineering topological many-body materials in microwave cavity arrays, Phys. Rev. X, 6, 041043 (2016)
[150] Noh, C.; Angelakis, D. G., Quantum simulations and many-body physics with light, Rep. Progr. Phys., 80, 16401 (2017)
[151] Fitzpatrick, M.; Sundaresan, N. M.; Li, A. C.Y.; Koch, J.; Houck, A. A., Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X, 7, 11016 (2017)
[152] Paik, H.; Schuster, D. I.; Bishop, L. S.; Kirchmair, G.; Catelani, G.; Sears, A. P.; Johnson, B. R.; Reagor, M. J.; Frunzio, L.; Glazman, L. I.; Girvin, S. M.; Devoret, M. H.; Schoelkopf, R. J., Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture, Phys. Rev. Lett., 107, 240501 (2011)
[153] Reagor, M.; Paik, H.; Catelani, G.; Sun, L.; Axline, C.; Holland, E.; Pop, I. M.; Masluk, N. A.; Brecht, T.; Frunzio, L.; Devoret, M. H.; Glazman, L.; Schoelkopf, R. J., Reaching 10 ms single photon lifetimes for superconducting aluminum cavities, Appl. Phys. Lett., 102, 192604 (2013)
[154] Rigetti, C.; Gambetta, J. M.; Poletto, S.; Plourde, B. L.T.; Chow, J. M.; Córcoles, A. D.; Smolin, J. A.; Merkel, S. T.; Rozen, J. R.; Keefe, G. A.; Rothwell, M. B.; Ketchen, M. B.; Steffen, M., Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms, Phys. Rev. B, 86, 100506 (2012)
[155] Kirchmair, G.; Vlastakis, B.; Leghtas, Z.; Nigg, S. E.; Paik, H.; Ginossar, E.; Mirrahimi, M.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J., Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature, 495, 205 (2013)
[156] Minev, Z. K.; Serniak, K.; Pop, I. M.; Leghtas, Z.; Sliwa, K.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H., Planar multilayer circuit quantum electrodynamics, Phys. Rev. Appl., 5, 044021 (2016)
[157] Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J., Demonstration of superconducting micromachined cavities, Appl. Phys. Lett., 107, 192603 (2015)
[158] LaHaye, M. D.; Suh, J.; Echternach, P. M.; Schwab, K. C.; Roukes, M. L., Nanomechanical measurements of a superconducting qubit, Nature, 459, 960 (2009)
[159] O’Connell, A. D.; Hofheinz, M.; Ansmann, M.; Bialczak, R. C.; Lenander, M.; Lucero, E.; Neeley, M.; Sank, D.; Wang, H.; Weides, M.; Wenner, J.; Martinis, J. M.; Cleland, A. N., Quantum ground state and single-phonon control of a mechanical resonator, Nature, 464, 697 (2010)
[160] Pirkkalainen, J.-M.; Cho, S. U.; Li, J.; Paraoanu, G. S.; Hakonen, P. J.; Sillanpää, M. A., Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator, Nature, 494, 211 (2013)
[161] Pirkkalainen, J.-M.; Cho, S. U.; Massel, F.; Tuorila, J.; Heikkilä, T. T.; Hakonen, P. J.; Sillanpää, M. A., Cavity optomechanics mediated by a quantum two-level system, Nature Commun., 6, 6981 (2015)
[162] Rouxinol, F.; Hao, Y.; Brito, F.; Caldeira, A. O.; Irish, E. K.; LaHaye, M. D., Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system, Nanotechnology, 27, 364003 (2016)
[163] Manenti, R.; Kockum, A. F.; Patterson, A.; Behrle, T.; Rahamim, J.; Tancredi, G.; Nori, F.; Leek, P. J., Circuit quantum acoustodynamics with surface acoustic waves, Nature Commun., 8, 975 (2017)
[164] Chu, Y.; Kharel, P.; Renninger, W. H.; Burkhart, L. D.; Frunzio, L.; Rakich, P. T.; Schoelkopf, R. J., Quantum acoustics with superconducting qubits, Science, 358, 199 (2017) · Zbl 1404.81072
[165] Kockum, A. F.; Delsing, P.; Johansson, G., Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom, Phys. Rev. A, 90, 13837 (2014)
[166] Aref, T.; Delsing, P.; Ekström, M. K.; Kockum, A. F.; Gustafsson, M. V.; Johansson, G.; Leek, P. J.; Magnusson, E.; Manenti, R., Quantum acoustics with surface acoustic waves, (Hadfield, R. H.; Johansson, G., Superconducting Devices in Quantum Optics. Superconducting Devices in Quantum Optics, Quantum Science and Technology (2016), Springer International Publishing: Springer International Publishing Cham), 217-244
[167] Guo, L.; Grimsmo, A.; Kockum, A. F.; Pletyukhov, M.; Johansson, G., Giant acoustic atom: A single quantum system with a deterministic time delay, Phys. Rev. A, 95, 053821 (2017)
[168] Schuetz, M. J.A.; Kessler, E. M.; Giedke, G.; Vandersypen, L. M.K.; Lukin, M. D.; Cirac, J. I., Universal quantum transducers based on surface acoustic waves, Phys. Rev. X, 5, 31031 (2015)
[169] Bochmann, J.; Vainsencher, A.; Awschalom, D. D.; Cleland, A. N., Nanomechanical coupling between microwave and optical photons, Nat. Phys., 9, 712 (2013)
[170] Andrews, R. W.; Peterson, R. W.; Purdy, T. P.; Cicak, K.; Simmonds, R. W.; Regal, C. A.; Lehnert, K. W., Bidirectional and efficient conversion between microwave and optical light, Nat. Phys., 10, 321 (2014)
[171] Shumeiko, V. S., Quantum acousto-optic transducer for superconducting qubits, Phys. Rev. A, 93, 023838 (2015)
[172] Hoi, I.-C.; Kockum, A. F.; Palomaki, T.; Stace, T. M.; Fan, B.; Tornberg, L.; Sathyamoorthy, S. R.; Johansson, G.; Delsing, P.; Wilson, C. M., Giant cross-kerr effect for propagating microwaves induced by an artificial atom, Phys. Rev. Lett., 111, 053601 (2013)
[173] Hoi, I.-C.; Kockum, A. F.; Tornberg, L.; Pourkabirian, A.; Johansson, G.; Delsing, P.; Wilson, C. M., Probing the quantum vacuum with an artificial atom in front of a mirror, Nat. Phys., 11, 1045 (2015)
[174] Peropadre, B.; Guerreschi, G. G.; Huh, J.; Aspuru-Guzik, A., Proposal for microwave boson sampling, Phys. Rev. Lett., 117, 140505 (2016)
[175] Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T., Josephson junction microwave modulators for qubit control, J. Appl. Phys., 121, 073904 (2017)
[176] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge University Press · Zbl 1049.81015
[177] Boul, A.; Aaronson, S., Generation of universal linear optics by any beam splitter, Phys. Rev. A, 89, 62316 (2014)
[178] Zeilinger, A., General properties of lossless beam splitters in interferometry, Amer. J. Phys., 49, 882 (1981)
[179] Fearn, H.; Loudon, R., Quantum theory of the lossless beam splitter, Opt. Commun., 64, 485 (1987)
[180] Barnett, S. M.; Jeffers, J.; Gatti, A.; Loudon, R., Quantum optics of lossy beam splitters, Phys. Rev. A, 57, 2134 (1998)
[181] Reck, M.; Zeilinger, A.; Bernstein, H. J.; Bertani, P., Experimental realization of any discrete unitary operator, Phys. Rev. Lett., 73, 58 (1994)
[182] Braunstein, S. L.; van Loock, P., Quantum information with continuous variables, Rev. Modern Phys., 77, 513 (2005) · Zbl 1205.81010
[183] Knill, E.; Laflamme, R.; Milburn, G. J., A scheme for efficient quantum computation with linear optics, Nature, 409, 46 (2001)
[184] Kok, P.; Munro, W. J.; Nemoto, K.; Ralph, T. C.; Dowling, J. P.; Milburn, G. J., Linear optical quantum computing with photonic qubits, Rev. Modern Phys., 79, 135 (2007)
[185] Adhikari, P.; Hafezi, M.; Taylor, J. M., Nonlinear optics quantum computing with circuit QED, Phys. Rev. Lett., 110, 060503 (2013)
[186] Gabelli, J.; Reydellet, L. H.; Fève, G.; Berroir, J. M.; Plaçais, B.; Roche, P.; Glattli, D. C., Hanbury Brown-Twiss correlations to probe the population statistics of GHz photons emitted by conductors, Phys. Rev. Lett., 93, 56801 (2004)
[187] Mariantoni, M.; Storcz, M. J.; Wilhelm, F. K.; Oliver, W. D.; Emmert, A.; Marx, A.; Gross, R.; Christ, H.; Solano, E., On-chip microwave fock states and quantum homodyne measurements, Physics (2005)
[188] da Silva, M. P.; Bozyigit, D.; Wallraff, A.; Blais, A., Schemes for the observation of photon correlation functions in circuit QED with linear detectors, Phys. Rev. A, 82, 043804 (2010)
[189] Mariantoni, M.; Menzel, E. P.; Deppe, F.; Araque Caballero, M. A.; Baust, A.; Niemczyk, T.; Hoffmann, E.; Solano, E.; Marx, A.; Gross, R., Planck spectroscopy and quantum noise of microwave beam splitters, Phys. Rev. Lett., 105, 133601 (2010)
[190] Menzel, E. P.; Deppe, F.; Mariantoni, M.; Araque Caballero, M.Á.; Baust, A.; Niemczyk, T.; Hoffmann, E.; Marx, A.; Solano, E.; Gross, R., Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography, Phys. Rev. Lett., 105, 100401 (2010)
[191] Bozyigit, D.; Lang, C.; Steffen, L.; Fink, J. M.; Eichler, C.; Baur, M.; Bianchetti, R.; Leek, P. J.; Filipp, S.; da Silva, M. P.; Blais, A.; Wallraff, A., Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors, Nat. Phys., 7, 154 (2011)
[192] Lang, C.; Bozyigit, D.; Eichler, C.; Steffen, L.; Fink, J. M.; Abdumalikov, A. A.; Baur, M.; Filipp, S.; da Silva, M. P.; Blais, A.; Wallraff, A., Observation of resonant photon blockade at microwave frequencies using correlation function measurements, Phys. Rev. Lett., 106, 243601 (2011)
[193] Eichler, C.; Bozyigit, D.; Wallraff, A., Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors, Phys. Rev. A, 86, 032106 (2012)
[194] Hoi, I.-C.; Palomaki, T.; Lindkvist, J.; Johansson, G.; Delsing, P.; Wilson, C. M., Generation of nonclassical microwave states using an artificial atom in 1D open space, Phys. Rev. Lett., 108, 263601 (2012)
[195] Menzel, E. P.; Di Candia, R.; Deppe, F.; Eder, P.; Zhong, L.; Ihmig, M.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Ballester, D.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Solano, E.; Marx, A.; Gross, R., Path entanglement of continuous-variable quantum microwaves, Phys. Rev. Lett., 109, 250502 (2012)
[196] Eichler, C., Experimental Characterization of Quantum Microwave Radiation and its Entanglement with a Superconducting Qubit (2013), ETH: ETH Zurich, (Ph.D. thesis)
[197] Hoi, I.-C.; Wilson, C. M.; Johansson, G.; Lindkvist, J.; Peropadre, B.; Palomaki, T.; Delsing, P., Microwave quantum optics with an artificial atom in one-dimensional open space, New J. Phys., 15, 25011 (2013)
[198] Lang, C.; Eichler, C.; Steffen, L.; Fink, J. M.; Woolley, M. J.; Blais, A.; Wallraff, A., Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies, Nat. Phys., 9, 345 (2013)
[199] Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A., Signatures of Hong-Ou-Mandel interference at microwave frequencies, New J. Phys., 15, 105025 (2013)
[200] Di Candia, R.; Menzel, E. P.; Zhong, L.; Deppe, F.; Marx, A.; Gross, R.; Solano, E., Dual-path methods for propagating quantum microwaves, New J. Phys., 16, 15001 (2014) · Zbl 1451.81050
[201] Ku, H. S.; Kindel, W. F.; Mallet, F.; Glancy, S.; Irwin, K. D.; Hilton, G. C.; Vale, L. R.; Lehnert, K. W., Generating and verifying entangled itinerant microwave fields with efficient and independent measurements, Phys. Rev. A, 91, 42305 (2015)
[202] Fedorov, K. G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R., Displacement of propagating squeezed microwave states, Phys. Rev. Lett., 117, 020502 (2016)
[203] Narla, A.; Shankar, S.; Hatridge, M.; Leghtas, Z.; Sliwa, K. M.; Zalys-Geller, E.; Mundhada, S. O.; Pfaff, W.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H., robust concurrent remote entanglement between two superconducting qubits, Phys. Rev. X, 6, 031036 (2016)
[204] Mariantoni, M., New Trends in Superconducting Circuit Quantum Electrodynamics: Two Amplifiers, Two Resonators, and Two Photons (2009), Technische Universität München, (Ph.D. thesis)
[205] Hoffmann, E.; Deppe, F.; Niemczyk, T.; Wirth, T.; Menzel, E. P.; Wild, G.; Huebl, H.; Mariantoni, M.; Weißl, T.; Lukashenko, A.; Zhuravel, A. P.; Ustinov, A. V.; Marx, A.; Gross, R., A superconducting 180-degree hybrid ring coupler for circuit quantum electrodynamics, Appl. Phys. Lett., 97, 222508 (2010)
[206] Abdo, B.; Schackert, F.; Hatridge, M.; Rigetti, C.; Devoret, M., Josephson amplifier for qubit readout, Appl. Phys. Lett., 99, 162506 (2011)
[207] Ku, H. S.; Mallet, F.; Vale, L. R.; Irwin, K. D.; Russek, S. E.; Hilton, G. C.; Lehnert, K. W., Design and testing of superconducting microwave passive components for quantum information processing, IEEE Trans. Appl. Supercond., 21, 452 (2011)
[208] Abdo, B.; Sliwa, K.; Schackert, F.; Bergeal, N.; Hatridge, M.; Frunzio, L.; Stone, A. D.; Devoret, M., Full coherent frequency conversion between two propagating microwave modes, Phys. Rev. Lett., 110, 173902 (2013)
[209] Cohn, S. B., A class of broadband three-port TEM-mode hybrids, IEEE Trans. Microw. Theory Tech., 16, 110 (1968)
[210] Wilkinson, E. J., An \(N\)-way hybrid power divider, IEEE Trans. Microw. Theory Tech., 8, 116 (1960)
[211] Roulet, A.; Le, H. N.; Scarani, V., Two photons on an atomic beam splitter: Nonlinear scattering and induced correlations, Phys. Rev. A, 93, 033838 (2016)
[212] Oehri, D.; Pletyukhov, M.; Gritsev, V.; Blatter, G.; Schmidt, S., Tunable, nonlinear Hong-Ou-Mandel interferometer, Phys. Rev. A, 91, 33816 (2015)
[213] Haeberlein, M.; Zueco, D.; Assum, P.; Weißl, T.; Hoffmann, E.; Peropadre, B.; García-Ripoll, J. J.; Solano, E.; Deppe, F.; Marx, A.; Gross, R., Fast microwave beam splitters from superconducting resonators, Physics (College. Park. Md). (2013)
[214] Lecocq, F.; Clark, J. B.; Simmonds, R. W.; Aumentado, J.; Teufel, J. D., Mechanically mediated microwave frequency conversion in the quantum regime, Phys. Rev. Lett., 116, 43601 (2016)
[215] Aaronson, S.; Arkhipov, A., The computational complexity of linear optics, Theory Comput., 9, 143 (2013) · Zbl 1298.81046
[216] Anderson, B. D.O.; Newcomb, R. W., On reciprocity and time-variable networks, Proc. IEEE, 53, 1674 (1965)
[217] Anderson, B.; Newcomb, R., The time-variable lattice and nonreciprocal RLC networks, IEEE Trans. Circuit Theory, 13, 233 (1966)
[218] Ranzani, L.; Aumentado, J., A geometric description of nonreciprocity in coupled two-mode systems, New J. Phys., 16, 103027 (2014) · Zbl 1451.81405
[219] Ranzani, L.; Aumentado, J., Graph-based analysis of nonreciprocity in coupled-mode systems, New J. Phys., 17, 23024 (2015)
[220] Deák, L.; Fülöp, T., Reciprocity in quantum, electromagnetic and other wave scattering, Ann. Phys., N.Y., 327, 1050 (2012) · Zbl 1243.81217
[221] Jalas, D.; Petrov, A.; Eich, M.; Freude, W.; Fan, S.; Yu, Z.; Baets, R.; Popović, M.; Melloni, A.; Joannopoulos, J. D.; Vanwolleghem, M.; Doerr, C. R.; Renner, H., What is -and what is not -an optical isolator, Nat. Photonics, 7, 579 (2013)
[222] Allen, P. J., The turnstile circulator, IEEE Trans. Microw. Theory Tech., 4, 223 (1956)
[223] Auld, B. A., The synthesis of symmetrical waveguide circulators, IEEE Trans. Microw. Theory Tech., 7, 238 (1959)
[224] Fay, C. E.; Comstock, R. L., Operation of the ferrite junction circulator, IEEE Trans. Microw. Theory Tech., 13, 15 (1965)
[225] Tanaka, S.; Shimomura, N.; Ohtake, K., Active circulators; The realization of circulators using transistors, Proc. IEEE, 53, 260 (1965)
[226] Estep, N. A.; Sounas, D. L.; Soric, J.; Alù, A., Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops, Nat. Phys., 10, 923 (2014)
[227] Fleury, R.; Sounas, D. L.; Sieck, C. F.; Haberman, M. R.; Alù, A., Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science, 343, 516 (2014)
[228] Viola, G.; DiVincenzo, D. P., Hall effect gyrators and circulators, Phys. Rev. X, 4, 21019 (2014)
[229] Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J., On-chip microwave quantum hall circulator, Phys. Rev. X, 7, 011007 (2017)
[230] Placke, B.; Bosco, S.; DiVincenzo, D., A model study of present-day Hall-effect circulators, EPJ Quantum Technol., 4, 5 (2017)
[231] Lira, H.; Yu, Z.; Fan, S.; Lipson, M., Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip, Phys. Rev. Lett., 109, 33901 (2012)
[232] Wang, D.-W.; Zhou, H.-T.; Guo, M.-J.; Zhang, J.-X.; Evers, J.; Zhu, S.-Y., Optical diode made from a moving photonic crystal, Phys. Rev. Lett., 110, 93901 (2013)
[233] Peng, B.; Özdemir, S. K.; Lei, F.; Monifi, F.; Gianfreda, M.; Long, G. L.; Fan, S.; Nori, F.; Bender, C. M.; Yang, L., Parity-time-symmetric whispering-gallery microcavities, Nat. Phys., 10, 394 (2014)
[234] Zhang, J.; Peng, B.; Özdemir, S. K.; Liu, Y.-X.; Jing, H.; Lü, X.-Y.; Liu, Y.-L.; Yang, L.; Nori, F., Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B, 92, 115407 (2015)
[235] Söllner, I.; Mahmoodian, S.; Hansen, S. L.; Midolo, L.; Javadi, A.; Kiršansk, G.; Pregnolato, T.; El-Ella, H.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P., Deterministic photon-emitter coupling in chiral photonic circuits, Nat. Nanotechnol., 10, 775 (2015)
[236] Scheucher, M.; Hilico, A.; Will, E.; Volz, J.; Rauschenbeutel, A., Quantum optical circulator controlled by a single chirally coupled atom, Science, 354, 1577 (2016)
[237] Kamal, A.; Clarke, J.; Devoret, M. H., Gain directionality and noise in microwave SQUID amplifiers: Input-output approach, Phys. Rev. B, 86, 144510 (2012)
[238] Abdo, B.; Sliwa, K.; Frunzio, L.; Devoret, M., Directional amplification with a Josephson circuit, Phys. Rev. X, 3, 31001 (2013)
[239] Abdo, B.; Sliwa, K.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R.; Devoret, M., Josephson directional amplifier for quantum measurement of superconducting circuits, Phys. Rev. Lett., 112, 167701 (2014)
[240] Sliwa, K. M.; Hatridge, M.; Narla, A.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H., Reconfigurable Josephson circulator/directional amplifier, Phys. Rev. X, 5, 41020 (2015)
[241] Lecocq, F.; Ranzani, L.; Peterson, G. A.; Cicak, K.; Simmonds, R. W.; Teufel, J. D.; Aumentado, J., Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier, Phys. Rev. Appl., 7, 024028 (2017)
[242] Macklin, C.; O’Brien, K.; Hover, D.; Schwartz, M. E.; Bolkhovsky, V.; Zhang, X.; Oliver, W. D.; Siddiqi, I., A near-quantum-limited Josephson traveling-wave parametric amplifier, Science, 350, 307 (2015)
[243] White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Neill, C.; O’Malley, P. J.J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Chaudhuri, S.; Gao, J.; Martinis, J. M., Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching, Appl. Phys. Lett., 106, 242601 (2015)
[244] Peano, V.; Houde, M.; Marquardt, F.; Clerk, A. A., Topological quantum fluctuations and traveling wave amplifiers, Phys. Rev. X, 6, 41026 (2016)
[245] Nunnenkamp, A.; Koch, J.; Girvin, S. M., Synthetic gauge fields and homodyne transmission in Jaynes-Cummings lattices, New J. Phys., 13, 095008 (2011)
[246] Habraken, S. J.M.; Stannigel, K.; Lukin, M. D.; Zoller, P.; Rabl, P., Continuous mode cooling and phonon routers for phononic quantum networks, New J. Phys., 14, 115005 (2012) · Zbl 1448.81165
[247] Fang, K.; Luo, J.; Metelmann, A.; Matheny, M. H.; Marquardt, F.; Clerk, A. A.; Painter, O., Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys., 13, 465 (2017)
[248] Peterson, G. A.; Lecocq, F.; Cicak, K.; Simmonds, R. W.; Aumentado, J.; Teufel, J. D., Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X, 7, 031001 (2017)
[249] Metelmann, A.; Clerk, A. A., Nonreciprocal photon transmission and amplification via reservoir engineering, Phys. Rev. X, 5, 021025 (2015)
[250] Metelmann, A.; Clerk, A. A., Nonreciprocal quantum interactions and devices via autonomous feedforward, Phys. Rev. A, 95, 013837 (2017)
[251] Fang, K.; Yu, Z.; Fan, S., Realizing effective magnetic field for photons by controlling the phase of dynamic modulation, Nat. Photonics, 6, 782 (2012)
[252] Roushan, P.; Neill, C.; Megrant, A.; Chen, Y.; Babbush, R.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; O’Malley, P. J.J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Kapit, E.; Neven, H.; Martinis, J., Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys., 13, 146 (2016)
[253] Kamal, A.; Metelmann, A., Minimal models for nonreciprocal amplification using biharmonic drives, Phys. Rev. Appl., 7, 034031 (2017)
[254] Kerckhoff, J.; Lalumierė, K.; Chapman, B. J.; Blais, A.; Lehnert, K. W., On-chip superconducting microwave circulator from synthetic rotation, Phys. Rev. Appl., 4, 34002 (2015)
[255] Stannigel, K.; Rabl, P.; Zoller, P., Driven-dissipative preparation of entangled states in cascaded quantum-optical networks, New J. Phys., 14, 63014 (2012) · Zbl 1448.81407
[256] Sathyamoorthy, S. R.; Tornberg, L.; Kockum, A. F.; Baragiola, B. Q.; Combes, J.; Wilson, C. M.; Stace, T. M.; Johansson, G., Quantum nondemolition detection of a propagating microwave photon, Phys. Rev. Lett., 112, 093601 (2014)
[257] Chang, D. E.; Sørensen, A. S.; Demler, E. A.; Lukin, M. D., A single-photon transistor using nanoscale surface plasmons, Nat. Phys., 3, 807 (2007)
[258] Chen, W.; Beck, K. M.; Bucker, R.; Gullans, M.; Lukin, M. D.; Tanji-Suzuki, H.; Vuletić, V., All-optical switch and transistor gated by one stored photon, Science, 341, 768 (2013)
[259] Neumeier, L.; Leib, M.; Hartmann, M. J., Single-photon transistor in circuit quantum electrodynamics, Phys. Rev. Lett., 111, 063601 (2013)
[260] Manzoni, M. T.; Reiter, F.; Taylor, J. M.; Sørensen, A. S., Single-photon transistor based on superconducting systems, Phys. Rev. B, 89, 180502 (2014)
[261] Gonzalez-Ballestero, C.; Moreno, E.; Garcia-Vidal, F. J.; Gonzalez-Tudela, A., Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings, Phys. Rev. A, 94, 063817 (2016)
[262] Kyriienko, O.; Sørensen, A. S., Continuous-wave single-photon transistor based on a superconducting circuit, Phys. Rev. Lett., 117, 140503 (2016)
[263] Lemr, K.; Bartkiewicz, K.; Černoch, A.; Soubusta, J., Resource-efficient linear-optical quantum router, Phys. Rev. A, 87, 62333 (2013)
[264] Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M., Experimental demonstration of a quantum router, Sci. Rep., 5, 12452 (2015)
[265] Gong, S.; Shen, H.; Barker, N. S., Study of broadband cryogenic DC-contact RF MEMS switches, IEEE Trans. Microw. Theory Tech., 57, 3442 (2009)
[266] Attar, S. S.; Setoodeh, S.; Mansour, R. R.; Gupta, D., Low-temperature superconducting DC-contact RF MEMS switch for cryogenic reconfigurable RF front-Ends, IEEE Trans. Microw. Theory Tech., 62, 1437 (2014)
[267] Ward, D. R.; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Eriksson, M. A., Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing, Appl. Phys. Lett., 102, 213107 (2013)
[268] Hornibrook, J. M.; Colless, J. I.; Conway Lamb, I. D.; Pauka, S. J.; Lu, H.; Gossard, A. C.; Watson, J. D.; Gardner, G. C.; Fallahi, S.; Manfra, M. J.; Reilly, D. J., Cryogenic control architecture for large-scale quantum computing, Phys. Rev. Appl., 3, 24010 (2015)
[269] Chapman, B. J.; Moores, B. A.; Rosenthal, E. I.; Kerckhoff, J.; Lehnert, K. W., General purpose multiplexing device for cryogenic microwave systems, Appl. Phys. Lett., 108, 222602 (2016)
[270] Naaman, O.; Abutaleb, M. O.; Kirby, C.; Rennie, M., On-chip Josephson junction microwave switch, Appl. Phys. Lett., 108, 112601 (2016)
[271] Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A., Superconducting switch for fast on-chip routing of quantum microwave fields, Phys. Rev. Appl., 6, 024009 (2016)
[272] Shen, J.-T.; Fan, S., Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum Bits, Phys. Rev. Lett., 95, 213001 (2005)
[273] Zhou, L.; Gong, Z. R.; Liu, Y.-X.; Sun, C. P.; Nori, F., Controllable scattering of a single photon inside a one-dimensional resonator waveguide, Phys. Rev. Lett., 101, 100501 (2008)
[274] Zhou, L.; Yang, S.; Liu, Y.-X.; Sun, C. P.; Nori, F., Quantum Zeno switch for single-photon coherent transport, Phys. Rev. A, 80, 62109 (2009)
[275] Abdumalikov, A. A.; Astafiev, O.; Zagoskin, A. M.; Pashkin, Y. A.; Nakamura, Y.; Tsai, J. S., Electromagnetically induced transparency on a single artificial atom, Phys. Rev. Lett., 104, 193601 (2010)
[276] Hoi, I.-C.; Wilson, C. M.; Johansson, G.; Palomaki, T.; Peropadre, B.; Delsing, P., Demonstration of a single-photon router in the microwave regime, Phys. Rev. Lett., 107, 073601 (2011)
[277] Li, J.; Paraoanu, G. S.; Cicak, K.; Altomare, F.; Park, J. I.; Simmonds, R. W.; Sillanpää, M. A.; Hakonen, P. J., Dynamical autler-townes control of a phase qubit, Sci. Rep., 2, 645 (2012)
[278] Shomroni, I.; Rosenblum, S.; Lovsky, Y.; Bechler, O.; Guendelman, G.; Dayan, B., All-optical routing of single photons by a one-atom switch controlled by a single photon, Science, 345, 903 (2014)
[279] Albrecht, A.; Caneva, T.; Chang, D. E., Changing optical band structure with single photons, New. J. Phys., 19, 115002 (2017), arXiv:1610.00988 · Zbl 07715555
[280] Sipahigil, A.; Evans, R. E.; Sukachev, D. D.; Burek, M. J.; Borregaard, J.; Bhaskar, M. K.; Nguyen, C. T.; Pacheco, J. L.; Atikian, H. A.; Meuwly, C.; Camacho, R. M.; Jelezko, F.; Bielejec, E.; Park, H.; Loncař, M.; Lukin, M. D., An integrated diamond nanophotonics platform for quantum-optical networks, Science, 354, 847 (2016)
[281] K. Xia, F. Jelezko, J. Twamley, Quantum routing of single optical photons with a superconducting flux qubit, 2016. arXiv:1608.05135; K. Xia, F. Jelezko, J. Twamley, Quantum routing of single optical photons with a superconducting flux qubit, 2016. arXiv:1608.05135
[282] Lu, J.; Zhou, L.; Kuang, L.-M.; Nori, F., Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences, Phys. Rev. A, 89, 13805 (2014)
[283] Yan, W.-B.; Fan, H., Single-photon quantum router with multiple output ports, Sci. Rep., 4, 4820 (2014)
[284] Sala, A.; Blaauboer, M., Proposal for a transmon-based quantum router, J. Phys. Condens. Matter., 28, 275701 (2016)
[285] Bermel, P.; Rodriguez, A.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M., Single-photon all-optical switching using waveguide-cavity quantum electrodynamics, Phys. Rev. A, 74, 43818 (2006)
[286] Xia, K.; Twamley, J., All-optical switching and router via the direct quantum control of coupling between cavity modes, Phys. Rev. X, 3, 31013 (2013)
[287] Dayan, B.; Parkins, A. S.; Aoki, T.; Ostby, E. P.; Vahala, K. J.; Kimble, H. J., A photon turnstile dynamically regulated by one atom, Science, 319, 1062 (2008)
[288] Rosenblum, S.; Parkins, S.; Dayan, B., Photon routing in cavity QED: Beyond the fundamental limit of photon blockade, Phys. Rev. A, 84, 33854 (2011)
[289] Volz, T.; Reinhard, A.; Winger, M.; Badolato, A.; Hennessy, K. J.; Hu, E. L.; Imamoḡlu, A., Ultrafast all-optical switching by single photons, Nat. Photonics, 6, 607 (2012)
[290] Mücke, M.; Figueroa, E.; Bochmann, J.; Hahn, C.; Murr, K.; Ritter, S.; Villas-Boas, C. J.; Rempe, G., Electromagnetically induced transparency with single atoms in a cavity, Nature, 465, 755 (2010)
[291] O’Shea, D.; Junge, C.; Volz, J.; Rauschenbeutel, A., Fiber-optical switch controlled by a single atom, Phys. Rev. Lett., 111, 193601 (2013)
[292] Tiecke, T. G.; Thompson, J. D.; de Leon, N. P.; Liu, L. R.; Vuletić, V.; Lukin, M. D., Nanophotonic quantum phase switch with a single atom, Nature, 508, 241 (2014)
[293] Flurin, E., The Josephson Mixer — A Swiss Army Knife for Microwave Quantum Optics (2014), Ecole Normale Superieure: Ecole Normale Superieure Paris, (Ph.D. thesis)
[294] Bergeal, N.; Schackert, F.; Metcalfe, M.; Vijay, R.; Manucharyan, V. E.; Frunzio, L.; Prober, D. E.; Schoelkopf, R. J.; Girvin, S. M.; Devoret, M. H., Phase-preserving amplification near the quantum limit with a Josephson ring modulator, Nature, 465, 64 (2010)
[295] Roch, N.; Flurin, E.; Nguyen, F.; Morfin, P.; Campagne-Ibarcq, P.; Devoret, M. H.; Huard, B., Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit, Phys. Rev. Lett., 108, 147701 (2012)
[296] Flurin, E.; Roch, N.; Mallet, F.; Devoret, M. H.; Huard, B., Generating entangled microwave radiation over two transmission lines, Phys. Rev. Lett., 109, 183901 (2012)
[297] Pillet, J.-D.; Flurin, E.; Mallet, F.; Huard, B., A compact design for the Josephson mixer: The lumped element circuit, Appl. Phys. Lett., 106, 222603 (2015)
[298] Schackert, F.; Roy, A.; Hatridge, M.; Devoret, M. H.; Stone, A. D., Three-wave mixing with three incoming waves: Signal-idler coherent attenuation and gain enhancement in a parametric amplifier, Phys. Rev. Lett., 111, 73903 (2013)
[299] Bergeal, N.; Schackert, F.; Frunzio, L.; Devoret, M. H., Two-mode correlation of microwave quantum noise generated by parametric down-conversion, Phys. Rev. Lett., 108, 123902 (2012)
[300] Flurin, E.; Roch, N.; Pillet, J. D.; Mallet, F.; Huard, B., Superconducting quantum node for entanglement and storage of microwave radiation, Phys. Rev. Lett., 114, 90503 (2015)
[301] Blais, A.; van den Brink, A. M.; Zagoskin, A. M., Tunable coupling of superconducting qubits, Phys. Rev. Lett., 90, 127901 (2003)
[302] Buisson, O.; Hekking, F. W.J., Entangled states in a josephson charge qubit coupled to a superconducting resonator, (Averin, D. V.; Ruggiero, B.; Silvestrini, P., Macrosc. Quantum Coherence Quantum Comput. (2001), Springer US: Springer US Boston, MA), 137 · Zbl 1039.81510
[303] Marquardt, F.; Bruder, C., Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island, Phys. Rev. B, 63, 054514 (2001)
[304] Yang, C.-P.; Chu, S.-I.; Han, S., Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED, Phys. Rev. A, 67, 042311 (2003)
[305] Zagoskin, A. M.; Grajcar, M.; Omelyanchouk, A. N., Selective amplification of a quantum state, Phys. Rev. A, 70, 060301 (2004)
[306] You, J. Q.; Tsai, J. S.; Nori, F., Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits, Phys. Rev. B, 68, 024510 (2003)
[307] Devoret, M.; Girvin, S.; Schoelkopf, R., Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be?, Ann. Phys., 16, 767 (2007) · Zbl 1132.82021
[308] Baksic, A.; Ciuti, C., Controlling discrete and continuous symmetries in superradiant phase transitions with circuit QED systems, Phys. Rev. Lett., 112, 173601 (2014)
[309] Meaney, C. P.; Duty, T.; McKenzie, R. H.; Milburn, G. J., Jahn-Teller instability in dissipative quantum systems, Phys. Rev. A, 81, 043805 (2010)
[310] Nataf, P.; Ciuti, C., No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED, Nature Commun., 1, 72 (2010)
[311] Nataf, P.; Ciuti, C., Vacuum degeneracy of a circuit QED system in the ultrastrong coupling regime, Phys. Rev. Lett., 104, 023601 (2010)
[312] Gambetta, J. M.; Houck, A. A.; Blais, A., Superconducting qubit with purcell protection and tunable coupling, Phys. Rev. Lett., 106, 030502 (2011)
[313] Hoffman, A. J.; Srinivasan, S. J.; Gambetta, J. M.; Houck, A. A., Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling, Phys. Rev. B, 84, 184515 (2011)
[314] Whittaker, J. D.; de Silva, F. C.S.; Allman, M. S.; Lecocq, F.; Cicak, K.; Sirois, A. J.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W., Tunable-cavity QED with phase qubits, Phys. Rev. B, 90, 024513 (2014)
[315] Shanks, W. E.; Underwood, D. L.; Houck, A. A., A scanning transmon qubit for strong coupling circuit quantum electrodynamics, Nature Commun., 4, 1991 (2013)
[316] Liu, Y.-X.; Yang, C.-X.; Sun, H.-C.; Wang, X.-B., Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields, New J. Phys., 16, 015031 (2014)
[317] Zhao, Y.-J.; Liu, Y.-L.; Liu, Y.-X.; Nori, F., Generating nonclassical photon states via longitudinal couplings between superconducting qubits and microwave fields, Phys. Rev. A, 91, 053820 (2015)
[318] Zhao, Y.-J.; Wang, C.; Zhu, X.; Liu, Y.-X., Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit, Sci. Rep., 6, 23646 (2016)
[319] Rabi, I. I., On the process of space quantization, Phys. Rev., 49, 324 (1936) · Zbl 0013.37401
[320] Rabi, I. I., Space quantization in a gyrating magnetic Field, Phys. Rev., 51, 652 (1937) · JFM 64.1483.04
[321] Bloch, F.; Siegert, A., Magnetic resonance for nonrotating fields, Phys. Rev., 57, 522 (1940)
[322] Jaynes, E.; Cummings, F., Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE, 51, 89 (1963)
[323] Nakamura, Y.; Pashkin, Y. A.; Tsai, J. S., Rabi oscillations in a Josephson-junction charge two-level system, Phys. Rev. Lett., 87, 246601 (2001)
[324] Irish, E. K.; Gea-Banacloche, J.; Martin, I.; Schwab, K. C., Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator, Phys. Rev. B, 72, 195410 (2005)
[325] Wilson, C. M.; Duty, T.; Persson, F.; Sandberg, M.; Johansson, G.; Delsing, P., Coherence times of dressed states of a superconducting qubit under extreme driving, Phys. Rev. Lett., 98, 257003 (2007)
[326] Kerman, A. J., Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators, New J. Phys., 15, 123011 (2013) · Zbl 1451.81171
[327] Billangeon, P.-M.; Tsai, J. S.; Nakamura, Y., Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits, Phys. Rev. B, 91, 094517 (2015)
[328] Didier, N.; Bourassa, J.; Blais, A., Fast quantum nondemolition readout by parametric modulation of longitudinal qubit-oscillator interaction, Phys. Rev. Lett., 115, 203601 (2015)
[329] Richer, S.; DiVincenzo, D., Circuit design implementing longitudinal coupling: A scalable scheme for superconducting qubits, Phys. Rev. B, 93, 134501 (2016)
[330] Liu, Y. X.; Sun, C. P.; Nori, F., Scalable superconducting qubit circuits using dressed states, Phys. Rev. A, 74, 052321 (2006)
[331] Blais, A.; Gambetta, J.; Wallraff, A.; Schuster, D. I.; Girvin, S. M.; Devoret, M. H.; Schoelkopf, R. J., Quantum-information processing with circuit quantum electrodynamics, Phys. Rev. A, 75, 032329 (2007)
[332] Royer, B.; Grimsmo, A. L.; Didier, N.; Blais, A., Fast and high-fidelity entangling gate through parametrically modulated longitudinal coupling, Quantum, 1, 11 (2017)
[333] Shore, B. W.; Knight, P. L., The Jaynes-Cummings model, J. Modern Opt., 40, 1195 (1993) · Zbl 0942.81636
[334] Bishop, L. S.; Chow, J. M.; Koch, J.; Houck, A. A.; Devoret, M. H.; Thuneberg, E.; Girvin, S. M.; Schoelkopf, R. J., Nonlinear response of the vacuum Rabi resonance, Nat. Phys., 5, 105 (2009)
[335] Fink, J. M.; Göppl, M.; Baur, M.; Bianchetti, R.; Leek, P. J.; Blais, A.; Wallraff, A., Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system, Nature, 454, 315 (2008)
[336] Fink, J. M.; Baur, M.; Bianchetti, R.; Filipp, S.; Göppl, M.; Leek, P. J.; Steffen, L.; Blais, A.; Wallraff, A., Thermal excitation of multi-photon dressed states in circuit quantum electrodynamics, Phys. Scr. T, 137, 014013 (2009)
[337] Wilson, C. M.; Johansson, G.; Duty, T.; Persson, F.; Sandberg, M.; Delsing, P., Dressed relaxation and dephasing in a strongly driven two-level system, Phys. Rev. B, 81, 024520 (2010)
[338] Carmichael, H. J., (Statistical Methods in Quantum Optics 2. Statistical Methods in Quantum Optics 2, Theoretical and Mathematical Physics (2008), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg) · Zbl 1130.81059
[339] Kockum, A. F.; Sandberg, M.; Vissers, M. R.; Gao, J.; Johansson, G.; Pappas, D. P., Detailed modelling of the susceptibility of a thermally populated, strongly driven circuit-QED system, J. Phys. B: At. Mol. Opt. Phys., 46, 224014 (2013)
[340] Koshino, K.; Inomata, K.; Yamamoto, T.; Nakamura, Y., Implementation of an impedance-matched \(\Lambda\) system by dressed-state engineering, Phys. Rev. Lett., 111, 153601 (2013)
[341] Inomata, K.; Koshino, K.; Lin, Z. R.; Oliver, W. D.; Tsai, J. S.; Nakamura, Y.; Yamamoto, T., Microwave down-conversion with an impedance-matched \(\Lambda\) system in driven circuit QED, Phys. Rev. Lett., 113, 063604 (2014)
[342] Koshino, K.; Inomata, K.; Lin, Z.; Nakamura, Y.; Yamamoto, T., Theory of microwave single-photon detection using an impedance-matched \(\Lambda\) system, Phys. Rev. A, 91, 043805 (2015)
[343] Koshino, K.; Lin, Z.; Inomata, K.; Yamamoto, T.; Nakamura, Y., Dressed-state engineering for continuous detection of itinerant microwave photons, Phys. Rev. A, 93, 023824 (2016)
[344] Koshino, K.; Terai, H.; Inomata, K.; Yamamoto, T.; Qiu, W.; Wang, Z.; Nakamura, Y., Observation of the three-state dressed states in circuit quantum electrodynamics, Phys. Rev. Lett., 110, 263601 (2013)
[345] Braumüller, J.; Cramer, J.; Schlör, S.; Rotzinger, H.; Radtke, L.; Lukashenko, A.; Yang, P.; Skacel, S. T.; Probst, S.; Marthaler, M.; Guo, L.; Ustinov, A. V.; Weides, M., Multiphoton dressing of an anharmonic superconducting many-level quantum circuit, Phys. Rev. B, 91, 54523 (2015)
[346] Tavis, M.; Cummings, F. W., Exact solution for an \(N\)-molecule-radiation-field Hamiltonian, Phys. Rev., 170, 379 (1968)
[347] Fink, J. M.; Bianchetti, R.; Baur, M.; Göppl, M.; Steffen, L.; Filipp, S.; Leek, P. J.; Blais, A.; Wallraff, A., Dressed collective qubit states and the Tavis-Cummings model in circuit QED, Phys. Rev. Lett., 103, 083601 (2009)
[348] Johansson, J.; Saito, S.; Meno, T.; Nakano, H.; Ueda, M.; Semba, K.; Takayanagi, H., Vacuum rabi oscillations in a macroscopic superconducting qubit \(L C\) oscillator system, Phys. Rev. Lett., 96, 127006 (2006)
[349] Sillanpää, M. A.; Park, J. I.; Simmonds, R. W., Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature, 449, 438 (2007)
[350] Vijay, R.; Macklin, C.; Slichter, D. H.; Weber, S. J.; Murch, K. W.; Naik, R.; Korotkov, A. N.; Siddiqi, I., Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback, Nature, 490, 77 (2012)
[351] Cui, W.; Nori, F., Feedback control of Rabi oscillations in circuit QED, Phys. Rev. A, 88, 063823 (2013)
[352] Leek, P. J.; Baur, M.; Fink, J. M.; Bianchetti, R.; Steffen, L.; Filipp, S.; Wallraff, A., Cavity quantum electrodynamics with separate photon storage and qubit readout modes, Phys. Rev. Lett., 104, 100504 (2010)
[353] Hofheinz, M.; Weig, E. M.; Ansmann, M.; Bialczak, R. C.; Lucero, E.; Neeley, M.; O’Connell, A. D.; Wang, H.; Martinis, J. M.; Cleland, A. N., Generation of Fock states in a superconducting quantum circuit, Nature, 454, 310 (2008)
[354] Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A., Vacuum Rabi splitting in semiconductors, Nat. Phys., 2, 81 (2006)
[355] Brune, M.; Schmidt-Kaler, F.; Maali, A.; Dreyer, J.; Hagley, E.; Raimond, J. M.; Haroche, S., Quantum Rabi oscillation: A direct test of field quantization in a cavity, Phys. Rev. Lett., 76, 1800 (1996) · Zbl 1244.81072
[356] Schuster, I.; Kubanek, A.; Fuhrmanek, A.; Puppe, T.; Pinkse, P. W.H.; Murr, K.; Rempe, G., Nonlinear spectroscopy of photons bound to one atom, Nat. Phys., 4, 382 (2008)
[357] Wang, H.; Hofheinz, M.; Ansmann, M.; Bialczak, R. C.; Lucero, E.; Neeley, M.; O’Connell, A. D.; Sank, D.; Wenner, J.; Cleland, A. N.; Martinis, J. M.; O’Connell, A. D.; Sank, D.; Wenner, J.; Cleland, A. N.; Martinis, J. M., Measurement of the decay of fock states in a superconducting quantum circuit, Phys. Rev. Lett., 101, 240401 (2008)
[358] Birnbaum, K. M.; Boca, A.; Miller, R.; Boozer, A. D.; Northup, T. E.; Kimble, H. J., Photon blockade in an optical cavity with one trapped atom, Nature, 436, 87 (2005)
[359] Liu, Y.-X.; Wei, L. F.; Nori, F., Measuring the quality factor of a microwave cavity using superconducting qubit devices, Phys. Rev. A, 72, 033818 (2005)
[360] Boissonneault, M.; Gambetta, J. M.; Blais, A., Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates, Phys. Rev. A, 79, 013819 (2009)
[361] Gambetta, J.; Blais, A.; Boissonneault, M.; Houck, A. A.; Schuster, D. I.; Girvin, S. M., Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect, Phys. Rev. A, 77, 012112 (2008)
[362] Bishop, L. S.; Ginossar, E.; Girvin, S. M., Response of the strongly driven Jaynes-Cummings oscillator, Phys. Rev. Lett., 105, 100505 (2010)
[363] Boissonneault, M.; Gambetta, J. M.; Blais, A., Improved superconducting qubit readout by qubit-induced nonlinearities, Phys. Rev. Lett., 105, 100504 (2010)
[364] Schuster, D.; Wallraff, A.; Blais, A.; Frunzio, L.; Huang, R.-S.; Majer, J.; Girvin, S.; Schoelkopf, R., ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field, Phys. Rev. Lett., 94, 123602 (2005)
[365] Gambetta, J.; Blais, A.; Schuster, D.; Wallraff, A.; Frunzio, L.; Majer, J.; Devoret, M.; Girvin, S.; Schoelkopf, R., Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting, Phys. Rev. A, 74, 042318 (2006)
[366] Fragner, A.; Göppl, M.; Fink, J. M.; Baur, M.; Bianchetti, R.; Leek, P. J.; Blais, A.; Wallraff, A., Resolving vacuum fluctuations in an electrical circuit by measuring the lamb shift, Science, 322, 1357 (2008)
[367] Vlastakis, B.; Kirchmair, G.; Leghtas, Z.; Nigg, S. E.; Frunzio, L.; Girvin, S. M.; Mirrahimi, M.; Devoret, M. H.; Schoelkopf, R. J., Deterministically encoding quantum information using 100-photon schrodinger cat states, Science, 342, 607 (2013) · Zbl 1355.81054
[368] Krastanov, S.; Albert, V. V.; Shen, C.; Zou, C.-L.; Heeres, R. W.; Vlastakis, B.; Schoelkopf, R. J.; Jiang, L., Universal control of an oscillator with dispersive coupling to a qubit, Phys. Rev. A, 92, 5 (2015)
[369] Majer, J.; Chow, J. M.; Gambetta, J. M.; Koch, J.; Johnson, B. R.; Schreier, J. A.; Frunzio, L.; Schuster, D. I.; Houck, A. A.; Wallraff, A.; Blais, A.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Coupling superconducting qubits via a cavity bus, Nature, 449, 443 (2007)
[370] Filipp, S.; Göppl, M.; Fink, J. M.; Baur, M.; Bianchetti, R.; Steffen, L.; Wallraff, A., Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics, Phys. Rev. A, 83, 063827 (2011)
[371] Stassi, R.; Macrì, V.; Kockum, A. F.; Di Stefano, O.; Miranowicz, A.; Savasta, S.; Nori, F., Quantum nonlinear optics without photons, Phys. Rev. A, 96, 023818 (2017)
[372] Purcell, E. M., Spontaneous emission probabilities at radio frequencies, Phys. Rev., 69, 681 (1946)
[373] Houck, A. A.; Schreier, J. A.; Johnson, B. R.; Chow, J. M.; Koch, J.; Gambetta, J. M.; Schuster, D. I.; Frunzio, L.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Controlling the spontaneous emission of a superconducting transmon qubit, Phys. Rev. Lett., 101, 080502 (2008)
[374] Schuster, D. I.; Houck, A. A.; Schreier, J. A.; Wallraff, A.; Gambetta, J. M.; Blais, A.; Frunzio, L.; Majer, J.; Johnson, B.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Resolving photon number states in a superconducting circuit, Nature, 445, 515 (2007)
[375] Berliń, G.; Aliaga, J., Validity of the rotating wave approximation in the driven Jaynes-Cummings model, J. Opt. B Quantum Semiclassical Opt., 6, 231 (2004)
[376] Anappara, A. A.; De Liberato, S.; Tredicucci, A.; Ciuti, C.; Biasiol, G.; Sorba, L.; Beltram, F., Signatures of the ultrastrong light-matter coupling regime, Phys. Rev. B, 79, 201303 (2009)
[377] Günter, G.; Anappara, A. A.; Hees, J.; Sell, A.; Biasiol, G.; Sorba, L.; De Liberato, S.; Ciuti, C.; Tredicucci, A.; Leitenstorfer, A.; Huber, R., Sub-cycle switch-on of ultrastrong light-matter interaction, Nature, 458, 178 (2009)
[378] Todorov, Y.; Andrews, A. M.; Colombelli, R.; De Liberato, S.; Ciuti, C.; Klang, P.; Strasser, G.; Sirtori, C., Ultrastrong light-matter coupling regime with polariton dots, Phys. Rev. Lett., 105, 196402 (2010)
[379] Geiser, M.; Castellano, F.; Scalari, G.; Beck, M.; Nevou, L.; Faist, J., Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells, Phys. Rev. Lett., 108, 106402 (2012)
[380] Scalari, G.; Maissen, C.; Turcinkova, D.; Hagenmuller, D.; De Liberato, S.; Ciuti, C.; Reichl, C.; Schuh, D.; Wegscheider, W.; Beck, M.; Faist, J., Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial, Science, 335, 1323 (2012)
[381] Maissen, C.; Scalari, G.; Valmorra, F.; Beck, M.; Faist, J.; Cibella, S.; Leoni, R.; Reichl, C.; Charpentier, C.; Wegscheider, W., Ultrastrong coupling in the near field of complementary split-ring resonators, Phys. Rev. B, 90, 205309 (2014)
[382] Zhang, Q.; Lou, M.; Li, X.; Reno, J. L.; Pan, W.; Watson, J. D.; Manfra, M. J.; Kono, J., Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons, Nat. Phys., 12, 1005 (2016)
[383] Schwartz, T.; Hutchison, J. A.; Genet, C.; Ebbesen, T. W., Reversible switching of ultrastrong light-molecule coupling, Phys. Rev. Lett., 106, 196405 (2011)
[384] Kéna-Cohen, S.; Maier, S. A.; Bradley, D. D.C., Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor microcavities, Adv. Opt. Mater., 1, 827 (2013)
[385] Gambino, S.; Mazzeo, M.; Genco, A.; Di Stefano, O.; Savasta, S.; Patanè, S.; Ballarini, D.; Mangione, F.; Lerario, G.; Sanvitto, D.; Gigli, G., Exploring light-matter interaction phenomena under ultrastrong coupling regime, ACS Photon., 1, 1042 (2014)
[386] Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Di Stefano, O.; Patanè, S.; Savasta, S.; Sanvitto, D.; Gigli, G., Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes, Appl. Phys. Lett., 104, 233303 (2014)
[387] Gubbin, C. R.; Maier, S. A.; Kéna-Cohen, S., Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode, Appl. Phys. Lett., 104, 233302 (2014)
[388] George, J.; Chervy, T.; Shalabney, A.; Devaux, E.; Hiura, H.; Genet, C.; Ebbesen, T. W., Multiple Rabi Splittings under ultrastrong vibrational coupling, Phys. Rev. Lett., 117, 153601 (2016)
[389] Goryachev, M.; Farr, W. G.; Creedon, D. L.; Fan, Y.; Kostylev, M.; Tobar, M. E., High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl., 2, 54002 (2014)
[390] Niemczyk, T.; Deppe, F.; Huebl, H.; Menzel, E. P.; Hocke, F.; Schwarz, M. J.; Garcia-Ripoll, J. J.; Zueco, D.; Hümmer, T.; Solano, E.; Marx, A.; Gross, R., Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys., 6, 772 (2010)
[391] Forn-Díaz, P.; Lisenfeld, J.; Marcos, D.; García-Ripoll, J. J.; Solano, E.; Harmans, C. J.P. M.; Mooij, J. E., Observation of the bloch-siegert shift in a qubit-oscillator system in the ultrastrong coupling Regime, Phys. Rev. Lett., 105, 237001 (2010)
[392] Baust, A.; Hoffmann, E.; Haeberlein, M.; Schwarz, M. J.; Eder, P.; Goetz, J.; Wulschner, F.; Xie, E.; Zhong, L.; Quijandría, F.; Zueco, D.; García Ripoll, J.-J.; García-Álvarez, L.; Romero, G.; Solano, E.; Fedorov, K. G.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R., Ultrastrong coupling in two-resonator circuit QED, Phys. Rev. B, 93, 214501 (2016)
[393] Forn-Díaz, P.; Romero, G.; Harmans, C. J.P. M.; Solano, E.; Mooij, J. E., Broken selection rule in the quantum Rabi model, Sci. Rep., 6, 26720 (2016)
[394] Chen, Z.; Wang, Y.; Li, T.; Tian, L.; Qiu, Y.; Inomata, K.; Yoshihara, F.; Han, S.; Nori, F.; Tsai, J. S.; You, J. Q., Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system, Phys. Rev. A, 96, 012325 (2017)
[395] Yoshihara, F.; Fuse, T.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Semba, K., Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys., 13, 44 (2017)
[396] Forn-Díaz, P.; García-Ripoll, J. J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M. A.; Belyansky, R.; Wilson, C. M.; Lupaşcu, A., Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime, Nat. Phys., 13, 39 (2017)
[397] Yoshihara, F.; Fuse, T.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Semba, K., Characteristic spectra of circuit quantum electrodynamics systems from the ultrastrong- to the deep-strong-coupling regime, Phys. Rev. A, 95, 053824 (2017)
[398] S.J. Bosman, M.F. Gely, V. Singh, A. Bruno, D. Bothner, G.A. Steele, Multi-mode ultra-strong coupling in circuit quantum electrodynamics, 2017. arXiv:1704.06208; S.J. Bosman, M.F. Gely, V. Singh, A. Bruno, D. Bothner, G.A. Steele, Multi-mode ultra-strong coupling in circuit quantum electrodynamics, 2017. arXiv:1704.06208
[399] N.K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno, F. Luthi, D.J. Thoen, A. Endo, L. DiCarlo, Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling, 2016. arXiv:1610.10065; N.K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno, F. Luthi, D.J. Thoen, A. Endo, L. DiCarlo, Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling, 2016. arXiv:1610.10065
[400] Braumüller, J.; Marthaler, M.; Schneider, A.; Stehli, A.; Rotzinger, H.; Weides, M.; Ustinov, A. V., Analog quantum simulation of the Rabi model in the ultra-strong coupling regime, Nature Commun., 8, 779 (2017)
[401] Ballester, D.; Romero, G.; García-Ripoll, J. J.; Deppe, F.; Solano, E., Quantum simulation of the ultrastrong-coupling dynamics in circuit quantum electrodynamics, Phys. Rev. X, 2, 021007 (2012)
[402] Mezzacapo, A.; Las Heras, U.; Pedernales, J. S.; DiCarlo, L.; Solano, E.; Lamata, L., Digital quantum rabi and dicke models in superconducting circuits, Sci. Rep., 4, 7482 (2014)
[403] Abdumalikov, A. A.; Astafiev, O.; Nakamura, Y.; Pashkin, Y.; Tsai, J.-S., Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator, Phys. Rev. B, 78, 180502 (2008)
[404] Bourassa, J.; Gambetta, J. M.; Abdumalikov, A. A.; Astafiev, O.; Nakamura, Y.; Blais, A., Ultrastrong coupling regime of cavity QED with phase-biased flux qubits, Phys. Rev. A, 80, 032109 (2009)
[405] Bosman, S. J.; Gely, M. F.; Singh, V.; Bothner, D.; Castellanos-Gomez, A.; Steele, G. A., Approaching ultrastrong coupling in transmon circuit QED using a high-impedance resonator, Phys. Rev. B, 95, 224515 (2017)
[406] Fedorov, A.; Feofanov, A. K.; Macha, P.; Forn-Díaz, P.; Harmans, C. J.P. M.; Mooij, J. E., Strong coupling of a quantum oscillator to a flux qubit at its symmetry point, Phys. Rev. Lett., 105, 060503 (2010)
[407] Peropadre, B.; Forn-Díaz, P.; Solano, E.; García-Ripoll, J. J., Switchable ultrastrong coupling in circuit QED, Phys. Rev. Lett., 105, 023601 (2010)
[408] Egger, D. J.; Wilhelm, F. K., Multimode circuit quantum electrodynamics with hybrid metamaterial transmission lines, Phys. Rev. Lett., 111, 163601 (2013)
[409] Bourassa, J.; Beaudoin, F.; Gambetta, J. M.; Blais, A., Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon, Phys. Rev. A, 86, 013814 (2012)
[410] Andersen, C. K.; Blais, A., Ultrastrong coupling dynamics with a transmon qubit, New J. Phys., 19, 23022 (2017)
[411] Gustafsson, M. V.; Aref, T.; Kockum, A. F.; Ekström, M. K.; Johansson, G.; Delsing, P., Propagating phonons coupled to an artificial atom, Science, 346, 207 (2014)
[412] Yoo, H.-I., Dynamical theory of an atom with two or three levels interacting with quantized cavity fields, Phys. Rep., 118, 239 (1985)
[413] Ma, K. K.W.; Law, C. K., Three-photon resonance and adiabatic passage in the large-detuning Rabi model, Phys. Rev. A, 92, 23842 (2015)
[414] Garziano, L.; Stassi, R.; Macrì, V.; Kockum, A. F.; Savasta, S.; Nori, F., Multiphoton quantum Rabi oscillations in ultrastrong cavity QED, Phys. Rev. A, 92, 063830 (2015)
[415] Garziano, L.; Macrì, V.; Stassi, R.; Di Stefano, O.; Nori, F.; Savasta, S., One photon can simultaneously excite two or more atoms, Phys. Rev. Lett., 117, 043601 (2016)
[416] Kockum, A. F.; Macrì, V.; Garziano, L.; Savasta, S.; Nori, F., Frequency conversion in ultrastrong cavity QED, Sci. Rep., 7, 5313 (2017)
[417] Kockum, A. F.; Miranowicz, A.; Macrì, V.; Savasta, S.; Nori, F., Deterministic quantum nonlinear optics with single atoms and virtual photons, Phys. Rev. A, 95, 063849 (2017)
[418] Braak, D., Integrability of the Rabi Model, Phys. Rev. Lett., 107, 100401 (2011)
[419] Solano, E., The dialogue between quantum light and matter, Physics, 4, 68 (2011)
[420] Casanova, J.; Romero, G.; Lizuain, I.; García-Ripoll, J. J.; Solano, E., Deep strong coupling regime of the Jaynes-Cummings model, Phys. Rev. Lett., 105, 263603 (2010)
[421] Braak, D., Solution of the Dicke model for \(N= 3\), J. Phys. B: At. Mol. Opt. Phys., 46, 224007 (2013)
[422] Peng, J.; Ren, Z.; Guo, G.; Ju, G.; Guo, X., Exact solutions of the generalized two-photon and two-qubit Rabi models, Eur. Phys. J. D, 67, 162 (2013)
[423] Chilingaryan, S. A.; Rodríguez-Lara, B. M., Exceptional solutions in two-mode quantum Rabi models, J. Phys. B: At. Mol. Opt. Phys., 48, 245501 (2015)
[424] Duan, L.; He, S.; Braak, D.; Chen, Q.-H., Solution of the two-mode quantum Rabi model using extended squeezed states, Eur. Lett., 112, 34003 (2015)
[425] Alderete, C. H.; Rodríguez-Lara, B. M., Cross-cavity quantum Rabi model, J. Phys. A, 49, 414001 (2016) · Zbl 1349.81217
[426] Peng, J.; Zheng, C.; Guo, G.; Guo, X.; Zhang, X.; Deng, C.; Ju, G.; Ren, Z.; Lamata, L.; Solano, E., Dark-like states for the multi-qubit and multi-photon Rabi models, J. Phys. A, 50, 174003 (2017) · Zbl 1366.81326
[427] Irish, E., Generalized rotating-wave approximation for arbitrarily large coupling, Phys. Rev. Lett., 99, 173601 (2007)
[428] Chen, Q.-H.; Zhang, Y.-Y.; Liu, T.; Wang, K.-L., Numerically exact solution to the finite-size Dicke model, Phys. Rev. A, 78, 051801 (2008)
[429] Zueco, D.; Reuther, G. M.; Kohler, S.; Hänggi, P., Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation, Phys. Rev. A, 80, 33846 (2009)
[430] Ashhab, S.; Nori, F., Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states, Phys. Rev. A, 81, 042311 (2010)
[431] Hausinger, J.; Grifoni, M., Qubit-oscillator system: An analytical treatment of the ultrastrong coupling regime, Phys. Rev. A, 82, 062320 (2010)
[432] Hwang, M.-J.; Choi, M.-S., Variational study of a two-level system coupled to a harmonic oscillator in an ultrastrong-coupling regime, Phys. Rev. A, 82, 025802 (2010)
[433] Beaudoin, F.; Gambetta, J. M.; Blais, A., Dissipation and ultrastrong coupling in circuit QED, Phys. Rev. A, 84, 043832 (2011)
[434] Hausinger, J.; Grifoni, M., Qubit-oscillator system under ultrastrong coupling and extreme driving, Phys. Rev. A, 83, 030301 (2011)
[435] Rossatto, D. Z.; Villas-Bôas, C. J.; Sanz, M.; Solano, E., Spectral classification of coupling regimes in the quantum Rabi model, Phys. Rev. A, 96, 013849 (2017)
[436] Klimov, A. B.; Chumakov, S. M., A Group-Theoretical Approach to Quantum Optics (2009), Wiley
[437] Hines, A.; Dawson, C.; McKenzie, R.; Milburn, G., Entanglement and bifurcations in Jahn-Teller models, Phys. Rev. A, 70, 022303 (2004) · Zbl 1227.81037
[438] Levine, G.; Muthukumar, V., Entanglement of a qubit with a single oscillator mode, Phys. Rev. B, 69, 113203 (2004)
[439] Garziano, L.; Stassi, R.; Ridolfo, A.; Di Stefano, O.; Savasta, S., Vacuum-induced symmetry breaking in a superconducting quantum circuit, Phys. Rev. A, 90, 043817 (2014)
[440] Ciuti, C.; Carusotto, I., Input-output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters, Phys. Rev. A, 74, 033811 (2006)
[441] Ridolfo, A.; Leib, M.; Savasta, S.; Hartmann, M. J., Photon blockade in the ultrastrong coupling regime, Phys. Rev. Lett., 109, 193602 (2012)
[442] Stassi, R.; Savasta, S.; Garziano, L.; Spagnolo, B.; Nori, F., Output field-quadrature measurements and squeezing in ultrastrong cavity-QED, New J. Phys., 18, 123005 (2016)
[443] Ridolfo, A.; Savasta, S.; Hartmann, M., Nonclassical radiation from thermal cavities in the ultrastrong coupling regime, Phys. Rev. Lett., 110, 163601 (2013)
[444] Garziano, L.; Ridolfo, A.; De Liberato, S.; Savasta, S., Cavity QED in the ultrastrong coupling regime: Photon bunching from the emission of individual dressed qubits, ACS Photon., 4, 2345 (2017)
[445] Lolli, J.; Baksic, A.; Nagy, D.; Manucharyan, V. E.; Ciuti, C., Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics, Phys. Rev. Lett., 114, 183601 (2015)
[446] Cirio, M.; Debnath, K.; Lambert, N.; Nori, F., Amplified optomechanical transduction of virtual radiation pressure, Phys. Rev. Lett., 119, 053601 (2017)
[447] Ciuti, C.; Bastard, G.; Carusotto, I., Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B, 72, 115303 (2005)
[448] Takashima, K.; Hatakenaka, N.; Kurihara, S.; Zeilinger, A., Nonstationary boundary effect for a quantum flux in superconducting nanocircuits, J. Phys. A, 41, 164036 (2008) · Zbl 1142.82034
[449] Werlang, T.; Dodonov, A.; Duzzioni, E.; Villas-Bôas, C., Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence, Phys. Rev. A, 78, 053805 (2008)
[450] A.V. Dodonov, L.C. Celeri, F. Pascoal, M.D. Lukin, S.F. Yelin, Photon generation from vacuum in non-stationary circuit QED, 2008. arXiv:0806.4035; A.V. Dodonov, L.C. Celeri, F. Pascoal, M.D. Lukin, S.F. Yelin, Photon generation from vacuum in non-stationary circuit QED, 2008. arXiv:0806.4035
[451] Dodonov, A. V., Photon creation from vacuum and interactions engineering in nonstationary circuit QED, J. Phys. Conf. Ser., 161, 012029 (2009)
[452] De Liberato, S.; Gerace, D.; Carusotto, I.; Ciuti, C., Extracavity quantum vacuum radiation from a single qubit, Phys. Rev. A, 80, 053810 (2009)
[453] Carusotto, I.; De Liberato, S.; Gerace, D.; Ciuti, C., Back-reaction effects of quantum vacuum in cavity quantum electrodynamics, Phys. Rev. A, 85, 023805 (2012)
[454] Garziano, L.; Ridolfo, A.; Stassi, R.; Di Stefano, O.; Savasta, S., Switching on and off of ultrastrong light-matter interaction: Photon statistics of quantum vacuum radiation, Phys. Rev. A, 88, 063829 (2013)
[455] Shapiro, D. S.; Zhukov, A. A.; Pogosov, W. V.; Lozovik, Y. E., Dynamical lamb effect in a tunable superconducting qubit-cavity system, Phys. Rev. A, 91, 063814 (2015)
[456] De Liberato, S., Virtual photons in the ground state of a dissipative system, Nat. Commun., 8, 1465 (2017), arXiv:1609.04249
[457] Ridolfo, A.; Vilardi, R.; Di Stefano, O.; Portolan, S.; Savasta, S., All optical switch of vacuum rabi oscillations: the ultrafast quantum eraser, Phys. Rev. Lett., 106, 013601 (2011)
[458] Stassi, R.; Ridolfo, A.; Di Stefano, O.; Hartmann, M. J.; Savasta, S., Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime, Phys. Rev. Lett., 110, 243601 (2013)
[459] Huang, J.-F.; Law, C. K., Photon emission via vacuum-dressed intermediate states under ultrastrong coupling, Phys. Rev. A, 89, 033827 (2014)
[460] Di Stefano, O.; Stassi, R.; Garziano, L.; Kockum, A. F.; Savasta, S.; Nori, F., Feynman-diagrams approach to the quantum Rabi model for ultrastrong cavity QED: stimulated emission and reabsorption of virtual particles dressing a physical excitation, New J. Phys., 19, 053010 (2017)
[461] Cirio, M.; De Liberato, S.; Lambert, N.; Nori, F., Ground state electroluminescence, Phys. Rev. Lett., 116, 113601 (2016)
[462] Hepp, K.; Lieb, E. H., On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model, Ann. Phys., NY, 76, 360 (1973)
[463] Wang, Y. K.; Hioe, F. T., Phase transition in the Dicke Model of superradiance, Phys. Rev. A, 7, 831 (1973)
[464] Rzażewski, K.; Wódkiewicz, K.; Żakowicz, W., Phase transitions, two-level atoms, and the A2 term, Phys. Rev. Lett., 35, 432 (1975)
[465] Bialynicki-Birula, I.; Rzażewski, K., No-go theorem concerning the superradiant phase transition in atomic systems, Phys. Rev. A, 19, 301 (1979)
[466] Emary, C.; Brandes, T., Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E, 67, 66203 (2003)
[467] Viehmann, O.; von Delft, J.; Marquardt, F., Superradiant phase transitions and the standard description of circuit QED, Phys. Rev. Lett., 107, 113602 (2011)
[468] García-Ripoll, J. J.; Peropadre, B.; De Liberato, S., Light-matter decoupling and A2 term detection in superconducting circuits, Sci. Rep., 5, 16055 (2015)
[469] Jaako, T.; Xiang, Z.-L.; Garcia-Ripoll, J. J.; Rabl, P., Ultrastrong-coupling phenomena beyond the Dicke model, Phys. Rev. A, 94, 33850 (2016)
[470] Bamba, M.; Inomata, K.; Nakamura, Y., Superradiant phase transition in a superconducting circuit in thermal equilibrium, Phys. Rev. Lett., 117, 173601 (2016)
[471] M. Bamba, N. Imoto, Circuit configurations which can/cannot show super-radiant phase transitions, 2017. arXiv:1703.03533; M. Bamba, N. Imoto, Circuit configurations which can/cannot show super-radiant phase transitions, 2017. arXiv:1703.03533
[472] De Liberato, S., Light-matter decoupling in the deep strong coupling regime: The breakdown of the Purcell effect, Phys. Rev. Lett., 112, 016401 (2014)
[473] Romero, G.; Ballester, D.; Wang, Y. M.; Scarani, V.; Solano, E., Ultrafast quantum gates in circuit QED, Phys. Rev. Lett., 108, 120501 (2012)
[474] Wang, Y.; Guo, C.; Zhang, G.-Q.; Wang, G.; Wu, C., Ultrafast quantum computation in ultrastrongly coupled circuit QED systems, Sci. Rep., 7, 44251 (2017)
[475] Nataf, P.; Ciuti, C., Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED, Phys. Rev. Lett., 107, 190402 (2011)
[476] Kyaw, T. H.; Felicetti, S.; Romero, G.; Solano, E.; Kwek, L.-C., Scalable quantum memory in the ultrastrong coupling regime, Sci. Rep., 5, 8621 (2015)
[477] R. Stassi, F. Nori, Quantum memory in the ultrastrong-coupling regime via parity symmetry breaking, 2017. arXiv:1703.08951; R. Stassi, F. Nori, Quantum memory in the ultrastrong-coupling regime via parity symmetry breaking, 2017. arXiv:1703.08951
[478] Wang, Y.; Zhang, J.; Wu, C.; You, J. Q.; Romero, G., Holonomic quantum computation in the ultrastrong-coupling regime of circuit QED, Phys. Rev. A, 94, 12328 (2016)
[479] Larson, J., Jahn-Teller systems from a cavity QED perspective, Phys. Rev. A, 78, 033833 (2008)
[480] Dereli, T.; Gül, Y.; Forn-Díaz, P.; Müstecaplolu, Ö. E., Two-frequency Jahn-Teller systems in circuit QED, Phys. Rev. A, 85, 053841 (2012)
[481] Cao, X.; You, J. Q.; Zheng, H.; Nori, F., A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation, New J. Phys., 13, 073002 (2011)
[482] Lizuain, I.; Casanova, J.; García-Ripoll, J. J.; Muga, J. G.; Solano, E., Zeno physics in ultrastrong-coupling circuit QED, Phys. Rev. A, 81, 062131 (2010)
[483] Cao, X.; Ai, Q.; Sun, C.-P.; Nori, F., The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency, Phys. Lett. A, 376, 349 (2012) · Zbl 1255.81087
[484] Felicetti, S.; Romero, G.; Rossini, D.; Fazio, R.; Solano, E., Photon transfer in ultrastrongly coupled three-cavity arrays, Phys. Rev. A, 89, 013853 (2014)
[485] Dicke, R. H., Coherence in spontaneous radiation processes, Phys. Rev., 93, 99 (1954) · Zbl 0055.21702
[486] Roy, D.; Wilson, C. M.; Firstenberg, O., Colloquium: Strongly interacting photons in one-dimensional continuum, Rev. Modern Phys., 89, 021001 (2017)
[487] Akimov, A. V.; Mukherjee, A.; Yu, C. L.; Chang, D. E.; Zibrov, A. S.; Hemmer, P. R.; Park, H.; Lukin, M. D., Generation of single optical plasmons in metallic nanowires coupled to quantum dots, Nature, 450, 402 (2007)
[488] Mollow, B. R., Power spectrum of light scattered by two-level systems, Phys. Rev., 188, 1969 (1969)
[489] Abdumalikov, A. A.; Astafiev, O. V.; Pashkin, Y. A.; Nakamura, Y.; Tsai, J. S., Dynamics of coherent and incoherent emission from an artificial atom in a 1D space, Phys. Rev. Lett., 107, 043604 (2011)
[490] Baur, M.; Filipp, S.; Bianchetti, R.; Fink, J. M.; Göppl, M.; Steffen, L.; Leek, P. J.; Blais, A.; Wallraff, A., Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit, Phys. Rev. Lett., 102, 243602 (2009)
[491] Vamivakas, A. N.; Atatüre, M.; Dreiser, J.; Yilmaz, S. T.; Badolato, A.; Swan, A. K.; Goldberg, B. B.; Imamoḡlu, A.; Ünlü, M. S., Strong extinction of a far-field laser beam by a single quantum dot, Nano Lett., 7, 2892 (2007)
[492] Gerhardt, I.; Wrigge, G.; Bushev, P.; Zumofen, G.; Agio, M.; Pfab, R.; Sandoghdar, V., Strong extinction of a laser beam by a single molecule, Phys. Rev. Lett., 98, 33601 (2007)
[493] Tey, M. K.; Chen, Z.; Aljunid, S. A.; Chng, B.; Huber, F.; Maslennikov, G.; Kurtsiefer, C., Strong interaction between light and a single trapped atom without the need for a cavity, Nat. Phys., 4, 924 (2008)
[494] Wrigge, G.; Gerhardt, I.; Hwang, J.; Zumofen, G.; Sandoghdar, V., Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence, Nat. Phys., 4, 60 (2008)
[495] Hwang, J.; Pototschnig, M.; Lettow, R.; Zumofen, G.; Renn, A.; Götzinger, S.; Sandoghdar, V., A single-molecule optical transistor, Nature, 460, 76 (2009)
[496] Zumofen, G.; Mojarad, N. M.; Sandoghdar, V.; Agio, M., Perfect reflection of light by an oscillating dipole, Phys. Rev. Lett., 101, 180404 (2008)
[497] Hoi, I.-C., Quantum Optics with Propagating Microwaves in Superconducting Circuits (2013), Chalmers University of Technology: Chalmers University of Technology Gothenburg, (Ph.D. thesis)
[498] Astafiev, O. V.; Abdumalikov, A. A.; Zagoskin, A. M.; Pashkin, Y. A.; Nakamura, Y.; Tsai, J. S., Ultimate on-chip quantum amplifier, Phys. Rev. Lett., 104, 183603 (2010)
[499] Autler, S. H.; Townes, C. H., Stark effect in rapidly varying fields, Phys. Rev., 100, 703 (1955)
[500] Sillanpää, M. A.; Li, J.; Cicak, K.; Altomare, F.; Park, J. I.; Simmonds, R. W.; Paraoanu, G. S.; Hakonen, P. J., Autler-Townes effect in a superconducting three-level system, Phys. Rev. Lett., 103, 193601 (2009)
[501] Beck, K. M.; Hosseini, M.; Duan, Y.; Vuletić, V., Large conditional single-photon cross-phase modulation, Proc. Natl. Acad. Sci., 113, 9740 (2016)
[502] Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P.A.; Garg, A.; Zwerger, W., Dynamics of the dissipative two-state system, Rev. Modern Phys., 59, 1 (1987)
[503] Liu, Y.; Houck, A. A., Quantum electrodynamics near a photonic bandgap, Nat. Phys., 13, 48 (2016)
[504] van Loo, A. F.; Fedorov, A.; Lalumiere, K.; Sanders, B. C.; Blais, A.; Wallraff, A., Photon-mediated interactions between distant artificial atoms, Science, 342, 1494 (2013)
[505] Mlynek, J. A.; Abdumalikov, A. A.; Eichler, C.; Wallraff, A., Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate, Nature Commun., 5, 5186 (2014)
[506] Inomata, K.; Lin, Z.; Koshino, K.; Oliver, W. D.; Tsai, J.-S.; Yamamoto, T.; Nakamura, Y., Single microwave-photon detector using an artificial \(\Lambda \)-type three-level system, Nature Commun., 7, 12303 (2016)
[507] Schütz, M. J.A., Quantum Dots for Quantum Information Processing: Controlling and Using their Environment (2015), Ludwig-Maximilians-Universität: Ludwig-Maximilians-Universität München, (Ph.D. thesis)
[508] Chang, D. E.; Sørensen, A. S.; Hemmer, P. R.; Lukin, M. D., Strong coupling of single emitters to surface plasmons, Phys. Rev. B, 76, 35420 (2007)
[509] Koppens, F. H.L.; Chang, D. E.; Garcia de Abajo, F. J., Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett., 11, 3370 (2011)
[510] Christensen, J.; Manjavacas, A.; Thongrattanasiri, S.; Koppens, F. H.L.; García de Abajo, F. J., Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons, ACS Nano, 6, 431 (2012)
[511] Martín-Moreno, L.; de Abajo, F. J.G.; García-Vidal, F. J., Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube, Phys. Rev. Lett., 115, 173601 (2015)
[512] Lund-Hansen, T.; Stobbe, S.; Julsgaard, B.; Thyrrestrup, H.; Sünner, T.; Kamp, M.; Forchel, A.; Lodahl, P., Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide, Phys. Rev. Lett., 101, 113903 (2008)
[513] Laucht, A.; Pütz, S.; Günthner, T.; Hauke, N.; Saive, R.; Frédérick, S.; Bichler, M.; Amann, M.-C.; Holleitner, A. W.; Kaniber, M.; Finley, J. J., A waveguide-coupled on-chip single-photon source, Phys. Rev. X, 2, 011014 (2012)
[514] Arcari, M.; Söllner, I.; Javadi, A.; Lindskov Hansen, S.; Mahmoodian, S.; Liu, J.; Thyrrestrup, H.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P., Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide, Phys. Rev. Lett., 113, 093603 (2014)
[515] Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J., Superradiance for atoms trapped along a photonic crystal waveguide, Phys. Rev. Lett., 115, 063601 (2015)
[516] Reithmaier, G.; Kaniber, M.; Flassig, F.; Lichtmannecker, S.; Müller, K.; Andrejew, A.; Vučković, J.; Gross, R.; Finley, J. J., On-chip generation, routing, and detection of resonance fluorescence, Nano Lett., 15, 5208 (2015)
[517] Hood, J. D.; Goban, A.; Asenjo-Garcia, A.; Lu, M.; Yu, S.-P.; Chang, D. E.; Kimble, H. J., Atom-atom interactions around the band edge of a photonic crystal waveguide, Proc. Natl. Acad. Sci., 113, 10507 (2016)
[518] Manga Rao, V. S.C.; Hughes, S., Single quantum-dot Purcell factor and \(\beta\) factor in a photonic crystal waveguide, Phys. Rev. B, 75, 205437 (2007)
[519] Lecamp, G.; Lalanne, P.; Hugonin, J. P., Very large spontaneous-emission \(\beta\) factors in photonic-crystal waveguides, Phys. Rev. Lett., 99, 23902 (2007)
[520] Lodahl, P.; Mahmoodian, S.; Stobbe, S., Interfacing single photons and single quantum dots with photonic nanostructures, Rev. Modern Phys., 87, 347 (2015)
[521] Huck, A.; Andersen, U. L., Coupling single emitters to quantum plasmonic circuits, Nanophotonics, 5, 1 (2016)
[522] Bajcsy, M.; Hofferberth, S.; Balic, V.; Peyronel, T.; Hafezi, M.; Zibrov, A. S.; Vuletic, V.; Lukin, M. D., Efficient all-optical switching using slow light within a hollow fiber, Phys. Rev. Lett., 102, 203902 (2009)
[523] Vetsch, E.; Reitz, D.; Sagué, G.; Schmidt, R.; Dawkins, S. T.; Rauschenbeutel, A., Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber, Phys. Rev. Lett., 104, 203603 (2010)
[524] Goban, A.; Choi, K. S.; Alton, D. J.; Ding, D.; Lacroute, C.; Pototschnig, M.; Thiele, T.; Stern, N. P.; Kimble, H. J., Demonstration of a state-insensitive, compensated nanofiber trap, Phys. Rev. Lett., 109, 33603 (2012)
[525] Mitsch, R.; Sayrin, C.; Albrecht, B.; Schneeweiss, P.; Rauschenbeutel, A., Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide, Nature Commun., 5, 5713 (2014)
[526] Goban, A.; Hung, C.-L.; Yu, S.-P.; Hood, J. D.; Muniz, J. A.; Lee, J. H.; Martin, M. J.; McClung, A. C.; Choi, K. S.; Chang, D. E.; Painter, O.; Kimble, H. J., Atom-light interactions in photonic crystals, Nature Commun., 5, 3808 (2014)
[527] Béguin, J.-B.; Bookjans, E. M.; Christensen, S. L.; Sørensen, H. L.; Müller, J. H.; Polzik, E. S.; Appel, J., Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice, Phys. Rev. Lett., 113, 263603 (2014)
[528] Corzo, N. V.; Gouraud, B.; Chandra, A.; Goban, A.; Sheremet, A. S.; Kupriyanov, D. V.; Laurat, J., Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide, Phys. Rev. Lett., 117, 133603 (2016)
[529] Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J., Coherent backscattering of light off one-dimensional atomic strings, Phys. Rev. Lett., 117, 133604 (2016)
[530] Volz, J.; Scheucher, M.; Junge, C.; Rauschenbeutel, A., Nonlinear \(\pi\) phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom, Nat. Photonics, 8, 965 (2014)
[531] Chang, D. E.; Vuletić, V.; Lukin, M. D., Quantum nonlinear optics — photon by photon, Nat. Photonics, 8, 685 (2014)
[532] Faez, S.; Türschmann, P.; Haakh, H. R.; Götzinger, S.; Sandoghdar, V., Coherent interaction of light and single molecules in a dielectric nanoguide, Phys. Rev. Lett., 113, 213601 (2014)
[533] Petersen, J.; Volz, J.; Rauschenbeutel, A., Chiral nanophotonic waveguide interface based on spin-orbit interaction of light, Science, 346, 67 (2014)
[534] Bermúdez-Ureña, E.; Gonzalez-Ballestero, C.; Geiselmann, M.; Marty, R.; Radko, I. P.; Holmgaard, T.; Alaverdyan, Y.; Moreno, E.; García-Vidal, F. J.; Bozhevolnyi, S. I.; Quidant, R., Coupling of individual quantum emitters to channel plasmons, Nature Commun., 6, 7883 (2015)
[535] Young, A. B.; Thijssen, A. C.T.; Beggs, D. M.; Androvitsaneas, P.; Kuipers, L.; Rarity, J. G.; Hughes, S.; Oulton, R., Polarization engineering in photonic crystal waveguides for spin-photon entanglers, Phys. Rev. Lett., 115, 153901 (2015)
[536] Bliokh, K. Y.; Smirnova, D.; Nori, F., Quantum spin Hall effect of light, Science, 348, 1448 (2015) · Zbl 1355.78016
[537] Bliokh, K. Y.; Rodríguez-Fortuño, F. J.; Nori, F.; Zayats, A. V., Spin-orbit interactions of light, Nat. Photonics, 9, 796 (2015)
[538] Bliokh, K. Y.; Nori, F., Transverse and longitudinal angular momenta of light, Phys. Rep., 592, 1 (2015) · Zbl 1358.78008
[539] DeVoe, R. G.; Brewer, R. G., Observation of superradiant and subradiant spontaneous emission of two trapped ions, Phys. Rev. Lett., 76, 2049 (1996)
[540] Eschner, J.; Raab, C.; Schmidt-Kaler, F.; Blatt, R., Light interference from single atoms and their mirror images, Nature, 413, 495 (2001)
[541] Wilson, M. A.; Bushev, P.; Eschner, J.; Schmidt-Kaler, F.; Becher, C.; Blatt, R.; Dorner, U., Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror, Phys. Rev. Lett., 91, 213602 (2003)
[542] Bushev, P.; Wilson, A.; Eschner, J.; Raab, C.; Schmidt-Kaler, F.; Becher, C.; Blatt, R., Forces between a single atom and its distant mirror image, Phys. Rev. Lett., 92, 223602 (2004)
[543] Dubin, F.; Rotter, D.; Mukherjee, M.; Russo, C.; Eschner, J.; Blatt, R., Photon correlation versus interference of single-atom fluorescence in a half-cavity, Phys. Rev. Lett., 98, 183003 (2007)
[544] Lamb, W. E.; Retherford, R. C.; Lamb, E., Fine structure of the hydrogen atom by a microwave method, Phys. Rev., 72, 241 (1947)
[545] Fannes, M.; Nachtergaele, B.; Werner, R. F., Finitely correlated states on quantum spin chains, Comm. Math. Phys., 144, 443 (1992) · Zbl 0755.46039
[546] White, S. R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 69, 2863 (1992)
[547] Schollwock̈, U., The density-matrix renormalization group, Rev. Modern Phys., 77, 259 (2005) · Zbl 1205.82073
[548] Haegeman, J.; Cirac, J. I.; Osborne, T. J.; Verschelde, H.; Verstraete, F., Applying the variational principle to (1+1)-dimensional quantum field theories, Phys. Rev. Lett., 105, 251601 (2010)
[549] Verstraete, F.; Cirac, J. I., Continuous matrix product states for quantum fields, Phys. Rev. Lett., 104, 190405 (2010)
[550] Prior, J.; de Vega, I.; Chin, A. W.; Huelga, S. F.; Plenio, M. B., Quantum dynamics in photonic crystals, Phys. Rev. A, 87, 13428 (2013)
[551] Gardiner, C. W., Driving a quantum system with the output field from another driven quantum system, Phys. Rev. Lett., 70, 2269 (1993)
[552] Carmichael, H. J., Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett., 70, 2273 (1993)
[553] Gardiner, C. W.; Zoller, P., Quantum Noise (2004), Springer · Zbl 1072.81002
[554] Gough, J.; James, M. R., Quantum feedback networks: hamiltonian formulation, Comm. Math. Phys., 287, 1109 (2009) · Zbl 1196.81152
[555] Gough, J.; James, M. R., The series product and its application to quantum feedforward and feedback networks, IEEE Trans. Automat. Control, 54, 2530 (2009) · Zbl 1367.81026
[556] Tezak, N.; Niederberger, A.; Pavlichin, D. S.; Sarma, G.; Mabuchi, H., Specification of photonic circuits using quantum hardware description language, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370, 5270 (2012) · Zbl 1353.81074
[557] Zhang, J.; Liu, Y.-X.; Wu, R.-B.; Jacobs, K.; Nori, F., Non-Markovian quantum input-output networks, Phys. Rev. A, 87, 32117 (2013)
[558] Zhang, J.; Liu, Y.-X.; Wu, R.-B.; Jacobs, K.; Nori, F., Quantum feedback: Theory, experiments, and applications, Phys. Rep., 679, 1 (2017) · Zbl 1366.81191
[559] Gheri, K. M.; Ellinger, K.; Pellizzari, T.; Zoller, P., Photon-Wavepackets as flying quantum bits, Fortschr. Phys., 46, 401 (1998)
[560] Baragiola, B. Q.; Cook, R. L.; Brańczyk, A. M.; Combes, J., N-photon wave packets interacting with an arbitrary quantum system, Phys. Rev. A, 86, 13811 (2012)
[561] Gough, J. E.; James, M. R.; Nurdin, H. I.; Combes, J., Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states, Phys. Rev. A, 86, 43819 (2012)
[562] Baragiola, B. Q., Open Systems Dynamics for Propagating Quantum Field (2014), University of New Mexico: University of New Mexico Albuquerque, (Ph.D. thesis)
[563] Combes, J.; Kerckhoff, J.; Sarovar, M., The SLH framework for modeling quantum input-output networks, Adv. Phys. X, 2, 784 (2017)
[564] Nysteen, A.; Kristensen, P. T.; McCutcheon, D. P.S.; Kaer, P.; Mørk, J., Scattering of two photons on a quantum emitter in a one-dimensional waveguide: exact dynamics and induced correlations, New J. Phys., 17, 23030 (2015) · Zbl 1452.81117
[565] Xu, S.; Fan, S., Input-output formalism for few-photon transport: A systematic treatment beyond two photons, Phys. Rev. A, 91, 43845 (2015)
[566] Pichler, H.; Zoller, P., Photonic circuits with time delays and quantum feedback, Phys. Rev. Lett., 116, 093601 (2016)
[567] Zhou, L.; Dong, H.; Liu, Y.-X.; Sun, C. P.; Nori, F., Quantum supercavity with atomic mirrors, Phys. Rev. A, 78, 63827 (2008)
[568] Shi, T.; Sun, C. P., Lehmann-Symanzik-Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays, Phys. Rev. B, 79, 205111 (2009)
[569] Longo, P.; Schmitteckert, P.; Busch, K., Few-photon transport in low-dimensional systems: interaction-induced radiation trapping, Phys. Rev. Lett., 104, 23602 (2010)
[570] Liao, J.-Q.; Gong, Z. R.; Zhou, L.; Liu, Y.-X.; Sun, C. P.; Nori, F., Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities, Phys. Rev. A, 81, 42304 (2010)
[571] Longo, P.; Schmitteckert, P.; Busch, K., Few-photon transport in low-dimensional systems, Phys. Rev. A, 83, 63828 (2011)
[572] Roy, D., Correlated few-photon transport in one-dimensional waveguides: Linear and nonlinear dispersions, Phys. Rev. A, 83, 43823 (2011)
[573] Longo, P.; Cole, J. H.; Busch, K., The Hong-Ou-Mandel effect in the context of few-photon scattering, Opt. Express, 20, 12326 (2012)
[574] Moeferdt, M.; Schmitteckert, P.; Busch, K., Correlated photons in one-dimensional waveguides, Opt. Lett., 38, 3693 (2013)
[575] Martens, C.; Longo, P.; Busch, K., Photon transport in one-dimensional systems coupled to three-level quantum impurities, New J. Phys., 15, 83019 (2013)
[576] Peropadre, B.; Zueco, D.; Porras, D.; García-Ripoll, J. J., Nonequilibrium and nonperturbative dynamics of ultrastrong coupling in open lines, Phys. Rev. Lett., 111, 243602 (2013)
[577] Lombardo, F.; Ciccarello, F.; Palma, G. M., Photon localization versus population trapping in a coupled-cavity array, Phys. Rev. A, 89, 53826 (2014)
[578] Wang, Z. H.; Zhou, L.; Li, Y.; Sun, C. P., Controllable single-photon frequency converter via a one-dimensional waveguide, Phys. Rev. A, 89, 053813 (2014)
[579] Sanchez-Burillo, E.; Zueco, D.; Garcia-Ripoll, J. J.; Martin-Moreno, L., Scattering in the ultrastrong regime: nonlinear optics with one photon, Phys. Rev. Lett., 113, 263604 (2014)
[580] Schneider, M. P.; Sproll, T.; Stawiarski, C.; Schmitteckert, P.; Busch, K., Green’s-function formalism for waveguide QED applications, Phys. Rev. A, 93, 13828 (2016)
[581] Sánchez-Burillo, E.; García-Ripoll, J.; Martín-Moreno, L.; Zueco, D., Nonlinear quantum optics in the (ultra)strong light-matter coupling, Faraday Discuss., 178, 335 (2015)
[582] Calajó, G.; Ciccarello, F.; Chang, D.; Rabl, P., Atom-field dressed states in slow-light waveguide QED, Phys. Rev. A, 93, 033833 (2016)
[583] Kocabas, S. E., Effects of modal dispersion on few-photon-qubit scattering in one-dimensional waveguides, Phys. Rev. A, 93, 033829 (2016)
[584] Sánchez-Burillo, E.; Zueco, D.; Martín-Moreno, L.; García-Ripoll, J. J., Dynamical signatures of bound states in waveguide QED, Phys. Rev. A, 96, 023831 (2017)
[585] Rice, P.; Carmichael, H., Single-atom cavity-enhanced absorption. I. Photon statistics in the bad-cavity limit, IEEE J. Quantum Electron., 24, 1351 (1988)
[586] Turchette, Q. A.; Hood, C. J.; Lange, W.; Mabuchi, H.; Kimble, H. J., Measurement of conditional phase shifts for quantum logic, Phys. Rev. Lett., 75, 4710 (1995) · Zbl 1020.81553
[587] Turchette, Q. A.; Thompson, R. J.; Kimble, H. J., One-dimensional atoms, Appl. Phys. B, 60, S1 (1995)
[588] Bendickson, J. M.; Dowling, J. P.; Scalora, M., Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures, Phys. Rev. E, 53, 4107 (1996)
[589] Konik, R.; LeClair, A., Scattering theory of oscillator defects in an optical fiber, Phys. Rev. B, 58, 1872 (1998)
[590] Xu, Y.; Li, Y.; Lee, R. K.; Yariv, A., Scattering-theory analysis of waveguide-resonator coupling, Phys. Rev. E, 62, 7389 (2000)
[591] LeClair, A.; Lesage, F.; Lukyanov, S.; Saleur, H., The Maxwell-Bloch theory in quantum optics and the Kondo model, Phys. Lett. A, 235, 203 (1997) · Zbl 1044.81812
[592] Domokos, P.; Horak, P.; Ritsch, H., Quantum description of light-pulse scattering on a single atom in waveguides, Phys. Rev. A, 65, 033832 (2002)
[593] Kojima, K.; Hofmann, H. F.; Takeuchi, S.; Sasaki, K., Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field, Phys. Rev. A, 68, 013803 (2003)
[594] Shen, J.-T.; Fan, S., Strongly correlated multiparticle transport in one dimension through a quantum impurity, Phys. Rev. A, 76, 062709 (2007)
[595] Koshino, K., Novel method for solving the quantum nonlinear dynamics of photons: use of a classical input, Phys. Rev. Lett., 98, 223902 (2007)
[596] Shen, J.-T.; Fan, S., Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system, Phys. Rev. Lett., 98, 153003 (2007)
[597] Longo, P.; Schmitteckert, P.; Busch, K., Dynamics of photon transport through quantum impurities in dispersion-engineered one-dimensional systems, J. Opt. A Pure Appl. Opt., 11, 114009 (2009)
[598] Zheng, H.; Gauthier, D. J.; Baranger, H. U., Waveguide QED: Many-body bound-state effects in coherent and Fock-state scattering from a two-level system, Phys. Rev. A, 82, 63816 (2010)
[599] Dzsotjan, D.; Sørensen, A. S.; Fleischhauer, M., Quantum emitters coupled to surface plasmons of a nanowire: A Green’s function approach, Phys. Rev. B, 82, 75427 (2010)
[600] Rephaeli, E.; Shen, J.-T.; Fan, S., Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries, Phys. Rev. A, 82, 33804 (2010)
[601] Fan, S.; Kocabas, S. E.; Shen, J.-T., Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit, Phys. Rev. A, 82, 63821 (2010)
[602] Wang, Y.; Minar, J.; Sheridan, L.; Scarani, V., Efficient excitation of a two-level atom by a single photon in a propagating mode, Phys. Rev. A, 83, 63842 (2011)
[603] Derouault, S.; Bouchene, M. A., One-photon wavepacket interacting with a two-level atom in a waveguide: Constraint on the pulse shape, Phys. Lett. A, 376, 3491 (2012)
[604] Kocabas, S. E.; Rephaeli, E.; Fan, S., Resonance fluorescence in a waveguide geometry, Phys. Rev. A, 85, 23817 (2012)
[605] Witthaut, D.; Lukin, M. D.; Sørensen, A. S., Photon sorters and QND detectors using single photon emitters, Europhys. Lett., 97, 50007 (2012)
[606] Valente, D.; Portolan, S.; Nogues, G.; Poizat, J. P.; Richard, M.; Gérard, J. M.; Santos, M. F.; Auffèves, A., Monitoring stimulated emission at the single-photon level in one-dimensional atoms, Phys. Rev. A, 85, 23811 (2012)
[607] Rephaeli, E.; Fan, S., Dissipation in few-photon waveguide transport, Photonics Res., 1, 110 (2013)
[608] Zheng, H.; Gauthier, D. J.; Baranger, H. U., Decoy-state quantum key distribution with nonclassical light generated in a one-dimensional waveguide, Opt. Lett., 38, 622 (2013)
[609] Huang, J.-F.; Shi, T.; Sun, C. P.; Nori, F., Controlling single-photon transport in waveguides with finite cross section, Phys. Rev. A, 88, 013836 (2013)
[610] Li, Q.; Zhou, L.; Sun, C. P., Waveguide quantum electrodynamics: Controllable channel from quantum interference, Phys. Rev. A, 89, 63810 (2014)
[611] Lindkvist, J.; Johansson, G., Scattering of coherent pulses on a two-level system—single-photon generation, New J. Phys., 16, 055018 (2014)
[612] Fang, Y.-L. L.; Zheng, H.; Baranger, H. U., One-dimensional waveguide coupled to multiple qubits: photon-photon correlations, EPJ Quantum Technol., 1, 3 (2014)
[613] Zang, X.; Lalanne, P., Theoretical treatment of the interaction between two-level atoms and periodic waveguides, Opt. Lett., 40, 3869 (2015)
[614] Nysteen, A.; McCutcheon, D. P.S.; Mørk, J., Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter, Phys. Rev. A, 91, 63823 (2015)
[615] Pletyukhov, M.; Gritsev, V., Quantum theory of light scattering in a one-dimensional channel: Interaction effect on photon statistics and entanglement entropy, Phys. Rev. A, 91, 63841 (2015)
[616] Bera, S.; Baranger, H. U.; Florens, S., Dynamics of a qubit in a high-impedance transmission line from a bath perspective, Phys. Rev. A, 93, 33847 (2016)
[617] H.I. Nurdin, M.R. James, N. Yamamoto, Perfectly capturing traveling single photons of arbitrary temporal wavepackets with a single tunable device, 2016. arXiv:1609.05643; H.I. Nurdin, M.R. James, N. Yamamoto, Perfectly capturing traveling single photons of arbitrary temporal wavepackets with a single tunable device, 2016. arXiv:1609.05643
[618] Roulet, A.; Scarani, V., Solving the scattering of N photons on a two-level atom without computation, New J. Phys., 18, 93035 (2016) · Zbl 1456.81476
[619] Witthaut, D.; Sørensen, A. S., Photon scattering by a three-level emitter in a one-dimensional waveguide, New J. Phys., 12, 043052 (2010) · Zbl 1375.81261
[620] Roy, D., Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency, Phys. Rev. Lett., 106, 53601 (2011)
[621] Kolchin, P.; Oulton, R. F.; Zhang, X., Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level, Phys. Rev. Lett., 106, 113601 (2011)
[622] Valente, D.; Li, Y.; Poizat, J. P.; Gérard, J. M.; Kwek, L. C.; Santos, M. F.; Auffèves, A., Universal optimal broadband photon cloning and entanglement creation in one-dimensional atoms, Phys. Rev. A, 86, 22333 (2012)
[623] Zheng, H.; Gauthier, D. J.; Baranger, H. U., Strongly correlated photons generated by coupling a three- or four-level system to a waveguide, Phys. Rev. A, 85, 43832 (2012)
[624] Fan, B.; Kockum, A. F.; Combes, J.; Johansson, G.; Hoi, I.-C.; Wilson, C. M.; Delsing, P.; Milburn, G. J.; Stace, T. M., Breakdown of the Cross-Kerr scheme for photon counting, Phys. Rev. Lett., 110, 053601 (2013)
[625] Peropadre, B.; Lindkvist, J.; Hoi, I.-C.; Wilson, C. M.; Garcia-Ripoll, J. J.; Delsing, P.; Johansson, G., Scattering of coherent states on a single artificial atom, New J. Phys., 15, 035009 (2013)
[626] Roy, D.; Bondyopadhaya, N., Statistics of scattered photons from a driven three-level emitter in a one-dimensional open space, Phys. Rev. A, 89, 43806 (2014)
[627] Fang, Y.-L. L.; Baranger, H. U., Photon correlations generated by inelastic scattering in a one-dimensional waveguide coupled to three-level systems, Phys. E Low-Dimensional Syst. Nanostructures, 78, 92 (2016)
[628] Xu, S.; Fan, S., Generalized cluster decomposition principle illustrated in waveguide quantum electrodynamics, Phys. Rev. A, 95, 063809 (2017)
[629] Zheng, H.; Gauthier, D. J.; Baranger, H. U., Cavity-free photon blockade induced by many-body bound states, Phys. Rev. Lett., 107, 223601 (2011)
[630] Sánchez-Burillo, E.; Martín-Moreno, L.; Zueco, D.; García-Ripoll, J. J., One- and two-photon scattering from generalized V-type atoms, Phys. Rev. A, 94, 053857 (2016)
[631] Xu, S.; Rephaeli, E.; Fan, S., Analytic properties of two-photon scattering matrix in integrated quantum systems determined by the cluster decomposition principle, Phys. Rev. Lett., 111, 223602 (2013)
[632] Rephaeli, E.; Fan, S., Stimulated emission from a single excited atom in a waveguide, Phys. Rev. Lett., 108, 143602 (2012)
[633] Hong, C. K.; Ou, Z. Y.; Mandel, L., Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett., 59, 2044 (1987)
[634] Kleppner, D., Inhibited spontaneous emission, Phys. Rev. Lett., 47, 233 (1981)
[635] Lewenstein, M.; Zakrzewski, J.; Mossberg, T. W., Spontaneous emission of atoms coupled to frequency-dependent reservoirs, Phys. Rev. A, 38, 808 (1988)
[636] Wilhelm, F. K.; Kleff, S.; von Delft, J., The spin-boson model with a structured environment: a comparison of approaches, Chem. Phys., 296, 345 (2004)
[637] Grimsmo, A. L., Time-delayed quantum feedback control, Phys. Rev. Lett., 115, 60402 (2015)
[638] Stephen, M. J., First-order dispersion forces, J. Chem. Phys., 40, 669 (1964)
[639] Lehmberg, R. H., Radiation from an N-atom system. II. Spontaneous emission from a pair of atoms, Phys. Rev. A, 2, 889 (1970)
[640] Milonni, P. W.; Knight, P. L., Retardation in the resonant interaction of two identical atoms, Phys. Rev. A, 10, 1096 (1974)
[641] Ficek, Z.; Sanders, B. C., Quantum beats in two-atom resonance fluorescence, Phys. Rev. A, 41, 359 (1990)
[642] Ordonez, G.; Kim, S., Complex collective states in a one-dimensional two-atom system, Phys. Rev. A, 70, 32702 (2004)
[643] Le Kien, F.; Gupta, S. D.; Nayak, K. P.; Hakuta, K., Nanofiber-mediated radiative transfer between two distant atoms, Phys. Rev. A, 72, 063815 (2005)
[644] Rist, S.; Eschner, J.; Hennrich, M.; Morigi, G., Photon-mediated interaction between two distant atoms, Phys. Rev. A, 78, 13808 (2008)
[645] Kim, N.-C.; Li, J.-B.; Yang, Z.-J.; Hao, Z.-H.; Wang, Q.-Q., Switching of a single propagating plasmon by two quantum dots system, Appl. Phys. Lett., 97, 61110 (2010)
[646] Chen, W.; Chen, G.-Y.; Chen, Y.-N., Coherent transport of nanowire surface plasmons coupled to quantum dots, Opt. Express, 18, 10360 (2010)
[647] Chen, G.-Y.; Lambert, N.; Chou, C.-H.; Chen, Y.-N.; Nori, F., Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement, Phys. Rev. B, 84, 45310 (2011)
[648] Gonzalez-Tudela, A.; Martin-Cano, D.; Moreno, E.; Martin-Moreno, L.; Tejedor, C.; Garcia-Vidal, F. J., Entanglement of two qubits mediated by one-dimensional plasmonic waveguides, Phys. Rev. Lett., 106, 20501 (2011)
[649] Rephaeli, E.; Kocabas, S. E.; Fan, S., Few-photon transport in a waveguide coupled to a pair of colocated two-level atoms, Phys. Rev. A, 84, 63832 (2011)
[650] Martín-Cano, D.; González-Tudela, A.; Martín-Moreno, L.; García-Vidal, F. J.; Tejedor, C.; Moreno, E., Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides, Phys. Rev. B, 84, 235306 (2011)
[651] Cheng, M.-T.; Song, Y.-Y., Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire, Opt. Lett., 37, 978 (2012)
[652] Huidobro, P. A.; Nikitin, A. Y.; González-Ballestero, C.; Martín-Moreno, L.; García-Vidal, F. J., Superradiance mediated by graphene surface plasmons, Phys. Rev. B, 85, 155438 (2012)
[653] Zheng, H.; Baranger, H. U., Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions, Phys. Rev. Lett., 110, 113601 (2013)
[654] Huang, J.-F.; Liao, J.-Q.; Sun, C. P., Photon blockade induced by atoms with Rydberg coupling, Phys. Rev. A, 87, 23822 (2013)
[655] Gonzalez-Ballestero, C.; Garcia-Vidal, F. J.; Moreno, E., Non-Markovian effects in waveguide-mediated entanglement, New J. Phys., 15, 73015 (2013) · Zbl 1451.81071
[656] Lalumière, K.; Sanders, B. C.; van Loo, A. F.; Fedorov, A.; Wallraff, A.; Blais, A., Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms, Phys. Rev. A, 88, 043806 (2013)
[657] Zang, X. F.; Zhou, T.; Cai, B.; Zhu, Y. M., Controlling single-photon transport properties in a waveguide coupled with two separated atoms, J. Phys. B: At. Mol. Opt. Phys., 46, 145504 (2013)
[658] Derouault, S.; Bouchene, M. A., One-photon wave packet interacting with two separated atoms in a one-dimensional waveguide: Influence of virtual photons, Phys. Rev. A, 90, 23828 (2014)
[659] Gonzalez-Ballestero, C.; Moreno, E.; Garcia-Vidal, F. J., Generation, manipulation, and detection of two-qubit entanglement in waveguide QED, Phys. Rev. A, 89, 42328 (2014)
[660] Fratini, F.; Mascarenhas, E.; Safari, L.; Poizat, J.-P.; Valente, D.; Auffèves, A.; Gerace, D.; Santos, M. F., Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification, Phys. Rev. Lett., 113, 243601 (2014)
[661] Redchenko, E. S.; Yudson, V. I., Decay of metastable excited states of two qubits in a waveguide, Phys. Rev. A, 90, 63829 (2014)
[662] Laakso, M.; Pletyukhov, M., Scattering of two photons from two distant qubits: exact solution, Phys. Rev. Lett., 113, 183601 (2014)
[663] Facchi, P.; Kim, M. S.; Pascazio, S.; Pepe, F. V.; Pomarico, D.; Tufarelli, T., Bound states and entanglement generation in waveguide quantum electrodynamics, Phys. Rev. A, 94, 43839 (2016)
[664] Douglas, J. S.; Caneva, T.; Chang, D. E., Photon molecules in atomic gases trapped near photonic crystal waveguides, Phys. Rev. X, 6, 031017 (2016)
[665] Shahmoon, E.; Mazets, I.; Kurizki, G., Giant vacuum forces via transmission lines, Proc. Natl. Acad. Sci., 111, 10485 (2014)
[666] Ficek, Z.; Tanaś, R., Entangled states and collective nonclassical effects in two-atom systems, Phys. Rep., 372, 369 (2002) · Zbl 0999.81009
[667] Lehmberg, R. H., Radiation from an N-atom system. I. General formalism, Phys. Rev. A, 2, 883 (1970)
[668] Pichler, H.; Ramos, T.; Daley, A. J.; Zoller, P., Quantum optics of chiral spin networks, Phys. Rev. A, 91, 42116 (2015)
[669] Paulisch, V.; Kimble, H. J.; González-Tudela, A., Universal quantum computation in waveguide QED using decoherence free subspaces, New J. Phys., 18, 043041 (2016) · Zbl 1456.81150
[670] Friedberg, R.; Hartmann, S. R.; Manassah, J. T., Frequency shifts in emission and absorption by resonant systems of two-level atoms, Phys. Rep., 7, 101 (1973)
[671] Manassah, J. T., Statistical quantum electrodynamics of resonant atoms, Phys. Rep., 101, 359 (1983)
[672] Yudson, V. I.; Reineker, P., Multiphoton scattering in a one-dimensional waveguide with resonant atoms, Phys. Rev. A, 78, 52713 (2008)
[673] Tsoi, T. S.; Law, C. K., Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide, Phys. Rev. A, 78, 63832 (2008)
[674] Rakhmanov, A. L.; Zagoskin, A. M.; Savel’ev, S.; Nori, F., Quantum metamaterials: Electromagnetic waves in a Josephson qubit line, Phys. Rev. B, 77, 144507 (2008)
[675] Chang, D. E.; Jiang, L.; Gorshkov, A. V.; Kimble, H. J., Cavity QED with atomic mirrors, New J. Phys., 14, 63003 (2012)
[676] Shvetsov, A.; Satanin, A. M.; Nori, F.; Savel’ev, S.; Zagoskin, A. M., Quantum metamaterial without local control, Phys. Rev. B, 87, 235410 (2013)
[677] Roy, D., Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters, Sci. Rep., 3, 1 (2013)
[678] González-Tudela, A.; Porras, D., Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics, Phys. Rev. Lett., 110, 80502 (2013)
[679] Ramos, T.; Pichler, H.; Daley, A. J.; Zoller, P., Quantum spin dimers from chiral dissipation in cold-atom chains, Phys. Rev. Lett., 113, 237203 (2014)
[680] Zoubi, H., Collective interactions in an array of atoms coupled to a nanophotonic waveguide, Phys. Rev. A, 89, 43831 (2014)
[681] Asai, H.; Savel’ev, S.; Kawabata, S.; Zagoskin, A. M., Effects of lasing in a one-dimensional quantum metamaterial, Phys. Rev. B, 91, 134513 (2015)
[682] Caneva, T.; Manzoni, M. T.; Shi, T.; Douglas, J. S.; Cirac, J. I.; Chang, D. E., Quantum dynamics of propagating photons with strong interactions: a generalized input-output formalism, New J. Phys., 17, 113001 (2015)
[683] Fang, Y.-L. L.; Baranger, H. U., Waveguide QED: Power spectra and correlations of two photons scattered off multiple distant qubits and a mirror, Phys. Rev. A, 91, 53845 (2015)
[684] Shi, T.; Chang, D. E.; Cirac, J. I., Multiphoton-scattering theory and generalized master equations, Phys. Rev. A, 92, 53834 (2015)
[685] Li, X.; Xie, L.; Wei, L. F., Atomic lenses and ideal single-photon detections, Phys. Rev. A, 92, 063840 (2015)
[686] Haakh, H. R.; Faez, S.; Sandoghdar, V., Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide, Phys. Rev. A, 94, 053840 (2016)
[687] Asenjo-Garcia, A.; Hood, J. D.; Chang, D. E.; Kimble, H. J., Atom-light interactions in quasi-one-dimensional nanostructures: A Green’s-function perspective, Phys. Rev. A, 95, 033818 (2017)
[688] Brod, D. J.; Combes, J., Passive CPHASE gate via Cross-Kerr nonlinearities, Phys. Rev. Lett., 117, 80502 (2016)
[689] Brod, D. J.; Combes, J.; Gea-Banacloche, J., Two photons co- and counterpropagating through \(N\) cross-Kerr sites, Phys. Rev. A, 94, 23833 (2016)
[690] Ekin Kocabas, S., Few-photon scattering in dispersive waveguides with multiple qubits, Opt. Lett., 41, 2533 (2016)
[691] Guimond, P.-O.; Roulet, A.; Le, H. N.; Scarani, V., Rabi oscillation in a quantum cavity: Markovian and non-Markovian dynamics, Phys. Rev. A, 93, 23808 (2016)
[692] Liao, Z.; Nha, H.; Zubairy, M. S., Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters, Phys. Rev. A, 94, 53842 (2016)
[693] Mirza, I. M.; Schotland, J. C., Multiqubit entanglement in bidirectional-chiral-waveguide QED, Phys. Rev. A, 94, 12302 (2016)
[694] Mirza, I. M.; Schotland, J. C., Two-photon entanglement in multiqubit bidirectional-waveguide QED, Phys. Rev. A, 94, 12309 (2016)
[695] Munro, E.; Kwek, L. C.; Chang, D. E., Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide, New J. Phys., 19, 083018 (2017) · Zbl 1516.81227
[696] Ruostekoski, J.; Javanainen, J., Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases, Phys. Rev. Lett., 117, 143602 (2016)
[697] Leung, P. M.; Sanders, B. C., Coherent control of microwave pulse storage in superconducting circuits, Phys. Rev. Lett., 109, 253603 (2012)
[698] González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I., Efficient multiphoton generation in waveguide quantum electrodynamics, Phys. Rev. Lett., 118, 213601 (2017)
[699] Chang, D. E.; Gritsev, V.; Morigi, G.; Vuletić, V.; Lukin, M. D.; Demler, E. A., Crystallization of strongly interacting photons in a nonlinear optical fibre, Nat. Phys., 4, 884 (2008)
[700] Hafezi, M.; Chang, D. E.; Gritsev, V.; Demler, E.; Lukin, M. D., Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide, Phys. Rev. A, 85, 13822 (2012)
[701] Shen, J.-T.; Fan, S., Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom, Phys. Rev. A, 79, 23837 (2009)
[702] Shen, J.-T.; Fan, S., Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom, Phys. Rev. A, 79, 23838 (2009)
[703] Liao, J.-Q.; Law, C. K., Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity, Phys. Rev. A, 82, 53836 (2010)
[704] Shi, T.; Fan, S.; Sun, C. P., Two-photon transport in a waveguide coupled to a cavity in a two-level system, Phys. Rev. A, 84, 63803 (2011)
[705] Hughes, S.; Roy, C., Nonlinear photon transport in a semiconductor waveguide-cavity system containing a single quantum dot: Anharmonic cavity-QED regime, Phys. Rev. B, 85, 35315 (2012)
[706] Yan, W.-B.; Liu, Z.-J.; Zhou, L., Control of two-photon transport in a one-dimensional waveguide, Internat. J. Theoret. Phys., 51, 2237 (2012) · Zbl 1262.81279
[707] Shi, T.; Fan, S., Two-photon transport through a waveguide coupling to a whispering-gallery resonator containing an atom and photon-blockade effect, Phys. Rev. A, 87, 63818 (2013)
[708] Auffèves-Garnier, A.; Simon, C.; Gérard, J.-M.; Poizat, J.-P., Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime, Phys. Rev. A, 75, 53823 (2007)
[709] Zeeb, S.; Noh, C.; Parkins, A. S.; Carmichael, H. J., Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system, Phys. Rev. A, 91, 23829 (2015)
[710] Chang, D. E.; Safavi-Naeini, A. H.; Hafezi, M.; Painter, O., Slowing and stopping light using an optomechanical crystal array, New J. Phys., 13, 23003 (2011)
[711] Wang, C.-H.; Taylor, J. M., Landauer formulation of photon transport in driven systems, Phys. Rev. B, 94, 155437 (2016)
[712] Hinds, E. A.; Sandoghdar, V., Cavity QED level shifts of simple atoms, Phys. Rev. A, 43, 398 (1991)
[713] Dorner, U.; Zoller, P., Laser-driven atoms in half-cavities, Phys. Rev. A, 66, 023816 (2002)
[714] Kojima, K.; Hofmann, H. F.; Takeuchi, S.; Sasaki, K., Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate, Phys. Rev. A, 70, 13810 (2004)
[715] Koshino, K., Squeezing in the output field from a one-dimensional atom, J. Phys. B: At. Mol. Opt. Phys., 39, 4853 (2006)
[716] Dong, H.; Gong, Z. R.; Ian, H.; Zhou, L.; Sun, C. P., Intrinsic cavity QED and emergent quasinormal modes for a single photon, Phys. Rev. A, 79, 63847 (2009)
[717] Glaetzle, A. W.; Hammerer, K.; Daley, A. J.; Blatt, R.; Zoller, P., A single trapped atom in front of an oscillating mirror, Opt. Commun., 283, 758 (2010)
[718] Chen, Y.; Wubs, M.; Mørk, J.; Koenderink, A. F., Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides, New J. Phys., 13, 103010 (2011)
[719] Koshino, K.; Nakamura, Y., Control of the radiative level shift and linewidth of a superconducting artificial atom through a variable boundary condition, New J. Phys., 14, 043005 (2012)
[720] Valente, D.; Li, Y.; Poizat, J.-P.; Gérard, J.-M.; Kwek, L. C.; Santos, M. F.; Auffèves, A., Optimal irreversible stimulated emission, New J. Phys., 14, 83029 (2012) · Zbl 1448.81333
[721] Wang, Y.; Minaŕ, J.; Hetet́, G.; Scarani, V., Quantum memory with a single two-level atom in a half cavity, Phys. Rev. A, 85, 13823 (2012)
[722] Bradford, M.; Shen, J.-T., Spontaneous emission in cavity QED with a terminated waveguide, Phys. Rev. A, 87, 63830 (2013)
[723] Tufarelli, T.; Ciccarello, F.; Kim, M. S., Dynamics of spontaneous emission in a single-end photonic waveguide, Phys. Rev. A, 87, 13820 (2013)
[724] Tufarelli, T.; Kim, M. S.; Ciccarello, F., Non-markovianity of a quantum emitter in front of a mirror, Phys. Rev. A, 90, 12113 (2014)
[725] H.-X. Song, X.-Q. Sun, J. Lu, L. Zhou, Spatial dependent spontaneous emission of an atom in a semi-infinite waveguide of rectangular cross section, 2016. arXiv:1604.05133; H.-X. Song, X.-Q. Sun, J. Lu, L. Zhou, Spatial dependent spontaneous emission of an atom in a semi-infinite waveguide of rectangular cross section, 2016. arXiv:1604.05133
[726] Beige, A.; Pachos, J.; Walther, H., Spontaneous emission of an atom in front of a mirror, Phys. Rev. A, 66, 63801 (2002)
[727] Peropadre, B.; Romero, G.; Johansson, G.; Wilson, C. M.; Solano, E.; García-Ripoll, J. J., Approaching perfect microwave photodetection in circuit QED, Phys. Rev. A, 84, 063834 (2011)
[728] Meschede, D.; Jhe, W.; Hinds, E. A., Radiative properties of atoms near a conducting plane: An old problem in a new light, Phys. Rev. A, 41, 1587 (1990)
[729] Zheng, H.; Gauthier, D. J., Waveguide-QED-based photonic quantum computation, Phys. Rev. Lett., 111, 090502 (2013)
[730] Koshino, K.; Inomata, K.; Lin, Z. R.; Tokunaga, Y.; Yamamoto, T.; Nakamura, Y., Theory of deterministic entanglement generation between remote superconducting atoms, Phys. Rev. Appl., 7, 064006 (2017)
[731] Ciccarello, F.; Browne, D. E.; Kwek, L. C.; Schomerus, H.; Zarcone, M.; Bose, S., Quasideterministic realization of a universal quantum gate in a single scattering process, Phys. Rev. A, 85, 50305 (2012)
[732] Roy, D., Few-photon optical diode, Phys. Rev. B, 81, 155117 (2010)
[733] Yan, C.-H.; Wei, L.-F.; Jia, W.-Z.; Shen, J.-T., Controlling resonant photonic transport along optical waveguides by two-level atoms, Phys. Rev. A, 84, 45801 (2011)
[734] Guimond, P.-O.; Pichler, H.; Rauschenbeutel, A.; Zoller, P., Chiral quantum optics with V-level atoms and coherent quantum feedback, Phys. Rev. A, 94, 33829 (2016)
[735] Pletyukhov, M.; Gritsev, V., Scattering of massless particles in one-dimensional chiral channel, New J. Phys., 14, 95028 (2012)
[736] Ringel, M.; Pletyukhov, M.; Gritsev, V., Topologically protected strongly correlated states of photons, New J. Phys., 16, 113030 (2014)
[737] Ramos, T.; Vermersch, B.; Hauke, P.; Pichler, H.; Zoller, P., Non-Markovian dynamics in chiral quantum networks with spins and photons, Phys. Rev. A, 93, 62104 (2016)
[738] Lodahl, P.; Mahmoodian, S.; Stobbe, S.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Pichler, H.; Zoller, P., Chiral quantum optics, Nature, 541, 473 (2017)
[739] Le Hur, K., Kondo resonance of a microwave photon, Phys. Rev. B, 85, 140506 (2012)
[740] Goldstein, M.; Devoret, M. H.; Houzet, M.; Glazman, L. I., Inelastic microwave photon scattering off a quantum impurity in a Josephson-junction array, Phys. Rev. Lett., 110, 017002 (2013)
[741] Diaz-Camachó, G.; Bermudez, A.; García-Ripoll, J. J., Dynamical polaron Ansatz : A theoretical tool for the ultrastrong-coupling regime of circuit QED, Phys. Rev. A, 93, 043843 (2016)
[742] Snyman, I.; Florens, S., Robust Josephson-Kondo screening cloud in circuit quantum electrodynamics, Phys. Rev. B, 92, 085131 (2015)
[743] Gheeraert, N.; Bera, S.; Florens, S., Spontaneous emission of Schrödinger cats in a waveguide at ultrastrong coupling, New J. Phys., 19, 023036 (2017)
[744] Wei, L. F.; Maruyama, K.; Wang, X. B.; You, J. Q.; Nori, F., Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B, 81, 174513 (2010)
[745] Jerger, M.; Reshitnyk, Y.; Oppliger, M.; Potocniǩ, A.; Mondal, M.; Wallraff, A.; Goodenough, K.; Wehner, S.; Juliusson, K.; Langford, N. K.; Fedorov, A., Contextuality without nonlocality in a superconducting quantum system, Nature Commun., 7, 12930 (2016)
[746] Wang, X.-B.; You, J. Q.; Nori, F., Quantum entanglement via two-qubit quantum Zeno dynamics, Phys. Rev. A, 77, 062339 (2008)
[747] Helmer, F.; Mariantoni, M.; Solano, E.; Marquardt, F., Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect, Phys. Rev. A, 79, 052115 (2009)
[748] Cao, X.; You, J. Q.; Zheng, H.; Kofman, A. G.; Nori, F., Dynamics and quantum zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation, Phys. Rev. A, 82, 022119 (2010)
[749] Sabiń, C.; Leoń, J.; García-Ripoll, J. J., Detecting ground-state qubit self-excitations in circuit QED: A slow quantum anti-Zeno effect, Phys. Rev. B, 84, 024516 (2011)
[750] Feng, W.; Wang, P.; Ding, X.; Xu, L.; Li, X.-Q., Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback, Phys. Rev. A, 83, 042313 (2011)
[751] Chantasri, A.; Dressel, J.; Jordan, A. N., Action principle for continuous quantum measurement, Phys. Rev. A, 88, 42110 (2013)
[752] Li, H.-C.; Ge, G.-Q.; Feng, S.-B., Dressed Zeno effect in circuit quantum electrodynamics, Phys. Rev. A, 89, 062119 (2014)
[753] Mirrahimi, M., Cat-qubits for quantum computation, Comptes Rendus Phys., 17, 778 (2016)
[754] Cohen, J.; Smith, W. C.; Devoret, M. H.; Mirrahimi, M., Degeneracy-preserving quantum nondemolition measurement of parity-type observables for cat qubits, Phys. Rev. Lett., 119, 060503 (2017)
[755] Shalibo, Y.; Resh, R.; Fogel, O.; Shwa, D.; Bialczak, R.; Martinis, J. M.; Katz, N., Direct wigner tomography of a superconducting anharmonic oscillator, Phys. Rev. Lett., 110, 100404 (2013)
[756] Campagne-Ibarcq, P.; Bretheau, L.; Flurin, E.; Auffèves, A.; Mallet, F.; Huard, B., Observing interferences between past and future quantum states in resonance fluorescence, Phys. Rev. Lett., 112, 180402 (2014)
[757] Toyli, D. M.; Eddins, A. W.; Boutin, S.; Puri, S.; Hover, D.; Bolkhovsky, V.; Oliver, W. D.; Blais, A.; Siddiqi, I., Resonance fluorescence from an artificial atom in squeezed vacuum, Phys. Rev. X, 6, 031004 (2016)
[758] Cohen-Tannoudji, C. N., The Autler-Townes effect revisited, (Amaz. Light (1996), Springer), 109-123
[759] Harris, S. E.; Field, J. E.; Imamoğlu, A., Nonlinear optical processes using electromagnetically induced transparency, Phys. Rev. Lett., 64, 1107 (1990)
[760] Boller, K.; Imamoḡlu, A.; Harris, S. E., Observation of electromagnetically induced transparency, Phys. Rev. Lett., 66, 2593 (1991)
[761] Harris, S. E., Electromagnetically induced transparency, Phys. Today, 50, 36 (1997)
[762] Fleischhauer, M.; Imamoğlu, A.; Marangos, J. P., Electromagnetically induced transparency: Optics in coherent media, Rev. Modern Phys., 77, 633 (2005)
[763] Marangos, J. P., Electromagnetically induced transparency, J. Modern Opt., 45, 471 (1998)
[764] Wang, H.; Gu, X.; Liu, Y.-X.; Miranowicz, A.; Nori, F., Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system, Phys. Rev. A, 90, 023817 (2014)
[765] Abi-Salloum, T. Y., Electromagnetically induced transparency and Autler-Townes splitting: Two similar but distinct phenomena in two categories of three-level atomic systems, Phys. Rev. A, 81, 053836 (2010)
[766] Anisimov, P. M.; Dowling, J. P.; Sanders, B. C., Objectively discerning Autler-Townes splitting from electromagnetically induced transparency, Phys. Rev. Lett., 107, 163604 (2011)
[767] Fano, U., Effects of configuration interaction on intensities and phase shifts, Phys. Rev., 124, 1866 (1961) · Zbl 0116.23405
[768] Imamoḡlu, A.; Harris, S. E., Lasers without inversion: interference of dressed lifetime-broadened states, Opt. Lett., 14, 1344 (1989)
[769] Giner, L.; Veissier, L.; Sparkes, B.; Sheremet, A. S.; Nicolas, A.; Mishina, O.; Scherman, M.; Burks, S.; Shomroni, I.; Kupriyanov, D.; Lam, P.; Giacobino, E.; Laurat, J., Experimental investigation of the transition between Autler-Townes splitting and electromagnetically-induced-transparency models, Phys. Rev. A, 87, 013823 (2013)
[770] Peng, B.; Özdemir, S. K.; Chen, W.; Nori, F.; Yang, L., What is and what is not electromagnetically induced transparency in whispering-gallery microcavities, Nature Commun., 5, 5082 (2014)
[771] Lee, H.; Rostovtsev, Y.; Scully, M. O., Asymmetries between absorption and stimulated emission in driven three-level systems, Phys. Rev. A, 62, 063804 (2000)
[772] Agarwal, G. S., Nature of the quantum interference in electromagnetic-field-induced control of absorption, Phys. Rev. A, 55, 2467 (1997)
[773] Anisimov, P.; Kocharovskaya, O., Decaying-dressed-state analysis of a coherently driven three-level \(\Lambda\) system, J. Modern Opt., 55, 3159 (2008)
[774] Murali, K.; Dutton, Z.; Oliver, W.; Crankshaw, D.; Orlando, T., Probing decoherence with electromagnetically induced transparency in superconductive quantum circuits, Phys. Rev. Lett., 93, 087003 (2004)
[775] Dutton, Z.; Murali, K. V.R. M.; Oliver, W. D.; Orlando, T. P., Electromagnetically induced transparency in superconducting quantum circuits: Effects of decoherence, tunneling, and multilevel crosstalk, Phys. Rev. B, 73, 104516 (2006)
[776] Ian, H.; Liu, Y.-X.; Nori, F., Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits, Phys. Rev. A, 81, 063823 (2010)
[777] Li, J.; Paraoanu, G. S.; Cicak, K.; Altomare, F.; Park, J. I.; Simmonds, R. W.; Sillanpää, M. A.; Hakonen, P. J., Decoherence, Autler-Townes effect, and dark states in two-tone driving of a three-level superconducting system, Phys. Rev. B, 84, 104527 (2011)
[778] Wang, X.; Li, H.-R.; Chen, D.-X.; Liu, W.-X.; Li, F.-L., Tunable electromagnetically induced transparency in a composite superconducting system, Opt. Commun., 366, 321 (2016)
[779] Kelly, W. R.; Dutton, Z.; Schlafer, J.; Mookerji, B.; Ohki, T. A.; Kline, J. S.; Pappas, D. P., Direct observation of coherent population trapping in a superconducting artificial atom, Phys. Rev. Lett., 104, 163601 (2010)
[780] Suri, B.; Keane, Z. K.; Ruskov, R.; Bishop, L. S.; Tahan, C.; Novikov, S.; Robinson, J. E.; Wellstood, F. C.; Palmer, B. S., Observation of Autler-Townes effect in a dispersively dressed Jaynes-Cummings system, New J. Phys., 15, 125007 (2013)
[781] Novikov, S.; Robinson, J. E.; Keane, Z. K.; Suri, B.; Wellstood, F. C.; Palmer, B. S., Autler-Townes splitting in a three-dimensional transmon superconducting qubit, Phys. Rev. B, 88, 060503 (2013)
[782] Xu, H. K.; Song, C.; Liu, W. Y.; Xue, G. M.; Su, F. F.; Deng, H.; Tian, Y.; Zheng, D. N.; Han, S.; Zhong, Y. P.; Wang, H.; Liu, Y.-X.; Zhao, S. P., Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits, Nature Commun., 7, 11018 (2016)
[783] Novikov, S.; Sweeney, T.; Robinson, J. E.; Premaratne, S. P.; Suri, B.; Wellstood, F. C.; Palmer, B. S., Raman coherence in a circuit quantum electrodynamics lambda system, Nat. Phys., 12, 75 (2016)
[784] Liu, Q.-C.; Li, T.-F.; Luo, X.-Q.; Zhao, H.; Xiong, W.; Zhang, Y.-S.; Chen, Z.; Liu, J. S.; Chen, W.; Nori, F.; Tsai, J. S.; You, J. Q., Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system, Phys. Rev. A, 93, 053838 (2016)
[785] Gu, X.; Huai, S.-N.; Nori, F.; Liu, Y.-X., Polariton states in circuit QED for electromagnetically induced transparency, Phys. Rev. A, 93, 063827 (2016)
[786] J. Long, H.S. Ku, X. Wu, X. Gu, R.E. Lake, M. Bal, Y.-X. Liu, D.P. Pappas, Electromagnetically induced transparency in circuit QED with nested polariton states, 2017. arXiv:1704.08777; J. Long, H.S. Ku, X. Wu, X. Gu, R.E. Lake, M. Bal, Y.-X. Liu, D.P. Pappas, Electromagnetically induced transparency in circuit QED with nested polariton states, 2017. arXiv:1704.08777
[787] Field, J. E., Vacuum-Rabi-splitting-induced transparency, Phys. Rev. A, 47, 5064 (1993)
[788] Tanji-Suzuki, H.; Chen, W.; Landig, R.; Simon, J.; Vuletic, V., Vacuum-Induced transparency, Science, 333, 1266 (2011)
[789] Z.H. Peng, J.H. Ding, Y. Zhou, L.L. Ying, Z. Wang, L. Zhou, L.M. Kuang, Y.-X. Liu, O. Astafiev, J.S. Tsai, Vacuum induced Autler-Townes splitting in a superconducting artificial atom, 2017. arXiv:1705.11118; Z.H. Peng, J.H. Ding, Y. Zhou, L.L. Ying, Z. Wang, L. Zhou, L.M. Kuang, Y.-X. Liu, O. Astafiev, J.S. Tsai, Vacuum induced Autler-Townes splitting in a superconducting artificial atom, 2017. arXiv:1705.11118
[790] Nikoghosyan, G.; Fleischhauer, M., Photon-number selective group delay in cavity induced transparency, Phys. Rev. Lett., 105, 013601 (2010)
[791] J.-H. Ding, S.-N. Huai, H. Ian, Y.-X. Liu, Vacuum induced transparency and photon number resolved Autler-Townes splitting in a three-level system, 2017. arXiv:1707.02707; J.-H. Ding, S.-N. Huai, H. Ian, Y.-X. Liu, Vacuum induced transparency and photon number resolved Autler-Townes splitting in a three-level system, 2017. arXiv:1707.02707
[792] Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D., Quantum dynamics of single trapped ions, Rev. Modern Phys., 75, 281 (2003)
[793] Blatt, R.; Wineland, D., Entangled states of trapped atomic ions, Nature, 453, 1008 (2008)
[794] Blatt, R.; Roos, C. F., Quantum simulations with trapped ions, Nat. Phys., 8, 277 (2012)
[795] Liu, Y.-X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F., Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B, 76, 144518 (2007)
[796] Gunnarsson, D.; Tuorila, J.; Paila, A.; Sarkar, J.; Thuneberg, E.; Makhlin, Y.; Hakonen, P., Vibronic spectroscopy of an artificial molecule, Phys. Rev. Lett., 101, 256806 (2008)
[797] Wallraff, A.; Schuster, D.; Blais, A.; Gambetta, J.; Schreier, J.; Frunzio, L.; Devoret, M.; Girvin, S.; Schoelkopf, R., Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity, Phys. Rev. Lett., 99, 050501 (2007)
[798] Leek, P. J.; Filipp, S.; Maurer, P.; Baur, M.; Bianchetti, R.; Fink, J. M.; Goppl̈, M.; Steffen, L.; Wallraff, A., Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B, 79, 180511 (2009)
[799] Beaudoin, F.; da Silva, M. P.; Dutton, Z.; Blais, A., First-order sidebands in circuit QED using qubit frequency modulation, Phys. Rev. A, 86, 022305 (2012)
[800] Strand, J. D.; Ware, M.; Beaudoin, F.; Ohki, T. A.; Johnson, B. R.; Blais, A.; Plourde, B. L.T., First-order sideband transitions with flux-driven asymmetric transmon qubits, Phys. Rev. B, 87, 220505 (2013)
[801] Strauch, F. W., All-Resonant control of superconducting resonators, Phys. Rev. Lett., 109, 210501 (2012)
[802] Saito, S.; Thorwart, M.; Tanaka, H.; Ueda, M.; Nakano, H.; Semba, K.; Takayanagi, H., Multiphoton transitions in a macroscopic quantum two-state system, Phys. Rev. Lett., 93, 037001 (2004)
[803] Saito, S.; Meno, T.; Ueda, M.; Tanaka, H.; Semba, K.; Takayanagi, H., Parametric control of a superconducting flux qubit, Phys. Rev. Lett., 96, 107001 (2006)
[804] Wallraff, A.; Duty, T.; Lukashenko, A.; Ustinov, A., Multiphoton transitions between energy levels in a current-biased Josephson tunnel junction, Phys. Rev. Lett., 90, 037003 (2003)
[805] Shnyrkov, V. I.; Wagner, T.; Born, D.; Shevchenko, S. N.; Krech, W.; Omelyanchouk, A. N.; Il’ichev, E.; Meyer, H. G., Multiphoton transitions between energy levels in a phase-biased Cooper-pair box, Phys. Rev. B, 73, 024506 (2006)
[806] Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, F., Two-level systems driven by large-amplitude fields, Phys. Rev. A, 75, 063414 (2007)
[807] Oliver, W. D.; Valenzuela, S. O., Large-amplitude driving of a superconducting artificial atom, Quantum Inf. Process., 8, 261 (2009)
[808] Shevchenko, S.; Ashhab, S.; Nori, F., Landau-Zener-Stückelberg interferometry, Phys. Rep., 492, 1 (2010)
[809] Shevchenko, S. N.; Omelyanchouk, A. N.; Il’ichev, E., Multiphoton transitions in Josephson-junction qubits (Review Article), Low Temp. Phys., 38, 283 (2012)
[810] Shevchenko, S. N.; Ashhab, S.; Nori, F., Inverse Landau-Zener-Stückelberg problem for qubit-resonator systems, Phys. Rev. B, 85, 094502 (2012)
[811] Sun, Z.; Ma, J.; Wang, X.; Nori, F., Photon-assisted Landau-Zener transition: Role of coherent superposition states, Phys. Rev. A, 86, 012107 (2012)
[812] Stehlik, J.; Dovzhenko, Y.; Petta, J. R.; Johansson, J. R.; Nori, F.; Lu, H.; Gossard, A. C., Landau-Zener-Stückelberg interferometry of a single electron charge qubit, Phys. Rev. B, 86, 121303 (2012)
[813] Oliver, W. D.; Yu, Y.; Lee, J. C.; Berggren, K. K.; Levitov, L. S.; Orlando, T. P., Mach-Zehnder interferometry in a strongly driven superconducting qubit, Science, 310, 1653 (2005)
[814] Sillanpää, M.; Lehtinen, T.; Paila, A.; Makhlin, Y.; Hakonen, P., Continuous-time monitoring of Landau-Zener interference in a cooper-pair box, Phys. Rev. Lett., 96, 187002 (2006)
[815] Izmalkov, A.; van der Ploeg, S. H.W.; Shevchenko, S. N.; Grajcar, M.; Il’ichev, E.; Hübner, U.; Omelyanchouk, A. N.; Meyer, H.-G., Consistency of ground state and spectroscopic measurements on flux qubits, Phys. Rev. Lett., 101, 017003 (2008)
[816] Leppäkangas, J.; de Graaf, S. E.; Adamyan, A.; Fogelström, M.; Danilov, A. V.; Lindström, T.; Kubatkin, S. E.; Johansson, G., Effects of quasiparticle tunnelling in a circuit-QED realization of a strongly driven two-level system, J. Phys. B: At. Mol. Opt. Phys., 46, 224019 (2013)
[817] Neilinger, P.; Shevchenko, S. N.; Bogár, J.; Rehák, M.; Oelsner, G.; Karpov, D. S.; Hübner, U.; Astafiev, O.; Grajcar, M.; Il’ichev, E., Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics, Phys. Rev. B, 94, 094519 (2016)
[818] Satanin, A. M.; Denisenko, M. V.; Gelman, A. I.; Nori, F., Amplitude and phase effects in Josephson qubits driven by a biharmonic electromagnetic field, Phys. Rev. B, 90, 104516 (2014)
[819] Satanin, A. M.; Denisenko, M. V.; Ashhab, S.; Nori, F., Amplitude spectroscopy of two coupled qubits, Phys. Rev. B, 85, 184524 (2012)
[820] Hatakenaka, N.; Kurihara, S., Josephson micromaser, Czechoslov. J. Phys., 46, 2311 (1996)
[821] Hatakenaka, N.; Kurihara, S., Josephson cascade micromaser, Phys. Rev. A, 54, 1729 (1996)
[822] Zhirov, O. V.; Shepelyansky, D. L., Synchronization and bistability of a qubit coupled to a driven dissipative oscillator, Phys. Rev. Lett., 100, 014101 (2008)
[823] Marthaler, M.; Schön, G.; Shnirman, A., Photon-number squeezing in circuit quantum electrodynamics, Phys. Rev. Lett., 101, 147001 (2008)
[824] Marthaler, M.; Leppäkangas, J.; Cole, J. H., Lasing trapping states and multistability in a circuit quantum electrodynamical analog of a single-atom injection maser, Phys. Rev. B, 83, 180505 (2011)
[825] Jia, W. Z.; Wei, L. F.; Wang, Z. D., Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms, Phys. Rev. A, 83, 023811 (2011)
[826] Navarrete-Benlloch, C.; García-Ripoll, J. J.; Porras, D., Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics, Phys. Rev. Lett., 113, 193601 (2014)
[827] Berns, D. M.; Rudner, M. S.; Valenzuela, S. O.; Berggren, K. K.; Oliver, W. D.; Levitov, L. S.; Orlando, T. P., Amplitude spectroscopy of a solid-state artificial atom, Nature, 455, 51 (2008)
[828] Mu, Y.; Savage, C. M., One-atom lasers, Phys. Rev. A, 46, 5944 (1992)
[829] McKeever, J.; Boca, A.; Boozer, A. D.; Buck, J. R.; Kimble, H. J., Experimental realization of a one-atom laser in the regime of strong coupling, Nature, 425, 268 (2003)
[830] Rodrigues, D. A.; Imbers, J.; Armour, A. D., Quantum dynamics of a resonator driven by a superconducting single-electron transistor: a solid-state analogue of the micromaser, Phys. Rev. Lett., 98, 067204 (2007)
[831] André, S.; Brosco, V.; Shnirman, A.; Schön, G., Phase diffusion and locking in single-qubit lasers, Phys. Rev. A, 79, 53848 (2009)
[832] André, S.; Brosco, V.; Marthaler, M.; Shnirman, A.; Schön, G., Few-qubit lasing in circuit QED, Phys. Scr., T137, 14016 (2009)
[833] André, S.; Jin, P.-Q.; Brosco, V.; Cole, J. H.; Romito, A.; Shnirman, A.; Schön, G., Single-qubit lasing in the strong-coupling regime, Phys. Rev. A, 82, 53802 (2010)
[834] Chen, F.; Li, J.; Armour, A. D.; Brahimi, E.; Stettenheim, J.; Sirois, A. J.; Simmonds, R. W.; Blencowe, M. P.; Rimberg, A. J., Realization of a single-Cooper-pair Josephson laser, Phys. Rev. B, 90, 20506 (2014)
[835] Wineland, D. J.; Dalibard, J.; Cohen-Tannoudji, C., Sisyphus cooling of a bound atom, J. Opt. Soc. Amer. B, 9, 32 (1992)
[836] Grajcar, M.; van der Ploeg, S. H.W.; Izmalkov, A.; Il’ichev, E.; Meyer, H.-G.; Fedorov, A.; Shnirman, A.; Schön, G., Sisyphus cooling and amplification by a superconducting qubit, Nat. Phys., 4, 612 (2008)
[837] Nori, F., Atomic physics with a circuit, Nat. Phys., 4, 589 (2008)
[838] Zhang, P.; Wang, Y. D.; Sun, C. P., Cooling mechanism for a nanomechanical resonator by periodic coupling to a cooper pair box, Phys. Rev. Lett., 95, 097204 (2005)
[839] Skinner, J. C.; Prance, H.; Stiffell, P. B.; Prance, R. J., Sisyphus effects in a microwave-excited flux-qubit resonator system, Phys. Rev. Lett., 105, 257002 (2010)
[840] Naik, A.; Buu, O.; LaHaye, M. D.; Armour, A. D.; Clerk, A. A.; Blencowe, M. P.; Schwab, K. C., Cooling a nanomechanical resonator with quantum back-action, Nature, 443, 193 (2006)
[841] Valenzuela, S. O.; Oliver, W. D.; Berns, D. M.; Berggren, K. K.; Levitov, L. S.; Orlando, T. P., Microwave-Induced cooling of a superconducting qubit, Science, 314, 1589 (2006)
[842] Chiorescu, I., Microwave cooling of an artificial atom, Science, 314, 1549 (2006)
[843] Hauss, J.; Fedorov, A.; André, S.; Brosco, V.; Hutter, C.; Kothari, R.; Yeshwanth, S.; Shnirman, A.; Schön, G., Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator, New J. Phys., 10, 095018 (2008)
[844] Hauss, J.; Fedorov, A.; Hutter, C.; Shnirman, A.; Schön, G., Single-qubit lasing and cooling at the Rabi frequency, Phys. Rev. Lett., 100, 037003 (2008)
[845] Oelsner, G.; Macha, P.; Astafiev, O.; Il’ichev, E.; Grajcar, M.; Hübner, U.; Ivanov, B.; Neilinger, P.; Meyer, H.-G., Dressed-state amplification by a single superconducting qubit, Phys. Rev. Lett., 110, 053602 (2013)
[846] Neilinger, P.; Rehák, M.; Grajcar, M.; Oelsner, G.; Hübner, U.; Il’ichev, E., Two-photon lasing by a superconducting qubit, Phys. Rev. B, 91, 104516 (2015)
[847] Mompart, J.; Corbalán, R., Lasing without inversion, J. Opt. B Quantum Semiclassical Opt., 2, R7 (2000)
[848] Wu, F. Y.; Ezekiel, S.; Ducloy, M.; Mollow, B. R., Observation of amplification in a strongly driven two-level atomic system at optical frequencies, Phys. Rev. Lett., 38, 1077 (1977)
[849] Khitrova, G.; Valley, J. F.; Gibbs, H. M., Gain-feedback approach to optical instabilities in sodium vapor, Phys. Rev. Lett., 60, 1126 (1988)
[850] Shevchenko, S. N.; Oelsner, G.; Greenberg, Y. S.; Macha, P.; Karpov, D. S.; Grajcar, M.; Hübner, U.; Omelyanchouk, A. N.; Il’ichev, E., Amplification and attenuation of a probe signal by doubly dressed states, Phys. Rev. B, 89, 184504 (2014)
[851] Marthaler, M.; Utsumi, Y.; Golubev, D. S.; Shnirman, A.; Schön, G., Lasing without inversion in circuit quantum electrodynamics, Phys. Rev. Lett., 107, 093901 (2011)
[852] P.Y. Wen, A.F. Kockum, H. Ian, J.C. Chen, F. Nori, I.-C. Hoi, Reflective amplification without population inversion from a strongly driven superconducting qubit, 2017. arXiv:1707.06400; P.Y. Wen, A.F. Kockum, H. Ian, J.C. Chen, F. Nori, I.-C. Hoi, Reflective amplification without population inversion from a strongly driven superconducting qubit, 2017. arXiv:1707.06400
[853] Mollow, B. R., Stimulated emission and absorption near resonance for driven systems, Phys. Rev. A, 5, 2217 (1972)
[854] Friedmann, H.; Wilson-Gordon, A. D., Dispersion profiles of the absorptive response of a two-level system interacting with two intense fields, Phys. Rev. A, 36, 1333 (1987)
[855] Ma, J.; Wang, X.; Sun, C. P.; Nori, F., Quantum spin squeezing, Phys. Rep., 509, 89 (2011)
[856] Dodonov, V. V., ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years, J. Opt. B Quantum Semiclassical Opt., 4, R1 (2002)
[857] Gardiner, C. W., Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing, Phys. Rev. Lett., 56, 1917 (1986)
[858] Yurke, B.; Kaminsky, P. G.; Miller, R. E.; Whittaker, E. A.; Smith, A. D.; Silver, A. H.; Simon, R. W., Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., 60, 764 (1988)
[859] Yurke, B.; Corruccini, L. R.; Kaminsky, P. G.; Rupp, L. W.; Smith, A. D.; Silver, A. H.; Simon, R. W.; Whittaker, E. A., Observation of parametric amplification and deamplification in a Josephson parametric amplifier, Phys. Rev. A, 39, 2519 (1989)
[860] Hu, X., Quantum Fluctuations in Condensed Matter Systems: Squeezed States in Phonons and Josephson Junctions (1996), University of Michigan, (Ph.D. thesis)
[861] Everitt, M. J.; Clark, T. D.; Stiffell, P. B.; Vourdas, A.; Ralph, J. F.; Prance, R. J.; Prance, H., Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring, Phys. Rev. A, 69, 043804 (2004)
[862] Zagoskin, A. M.; Il’ichev, E.; McCutcheon, M. W.; Young, J. F.; Nori, F., Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit, Phys. Rev. Lett., 101, 253602 (2008)
[863] Zagoskin, A. M.; Savel’ev, S.; Nori, F.; Kusmartsev, F. V., Squeezing as the source of inefficiency in the quantum Otto cycle, Phys. Rev. B, 86, 014501 (2012)
[864] Moon, K.; Girvin, S. M., Theory of microwave parametric down-conversion and squeezing using circuit QED, Phys. Rev. Lett., 95, 140504 (2005)
[865] Zhang, J.; Liu, Y.-X.; Nori, F., Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control, Phys. Rev. A, 79, 052102 (2009)
[866] Elliott, M.; Ginossar, E., Enhancement and state tomography of a squeezed vacuum with circuit quantum electrodynamics, Phys. Rev. A, 92, 013826 (2015)
[867] Ojanen, T.; Salo, J., Possible scheme for on-chip element for squeezed microwave generation, Phys. Rev. B, 75, 184508 (2007)
[868] Kronwald, A.; Marquardt, F.; Clerk, A. A., Arbitrarily large steady-state bosonic squeezing via dissipation, Phys. Rev. A, 88, 063833 (2013)
[869] Didier, N.; Qassemi, F.; Blais, A., Perfect squeezing by damping modulation in circuit quantum electrodynamics, Phys. Rev. A, 89, 013820 (2014)
[870] Porras, D.; García-Ripoll, J. J., Shaping an itinerant quantum field into a multimode squeezed vacuum by dissipation, Phys. Rev. Lett., 108, 43602 (2012)
[871] Grimsmo, A. L.; Blais, A., Squeezing and quantum state engineering with Josephson travelling wave amplifiers, Npj Quantum Inf., 3, 20 (2017)
[872] Boissonneault, M.; Doherty, A. C.; Ong, F. R.; Bertet, P.; Vion, D.; Esteve, D.; Blais, A., Superconducting qubit as a probe of squeezing in a nonlinear resonator, Phys. Rev. A, 89, 022324 (2014)
[873] Ong, F. R.; Boissonneault, M.; Mallet, F.; Doherty, A. C.; Blais, A.; Vion, D.; Esteve, D.; Bertet, P., Quantum heating of a nonlinear resonator probed by a superconducting qubit, Phys. Rev. Lett., 110, 047001 (2013)
[874] Castellanos-Beltran, M. A.; Irwin, K. D.; Hilton, G. C.; Vale, L. R.; Lehnert, K. W., Amplification and squeezing of quantum noise with a tunable Josephson metamaterial, Nat. Phys., 4, 929 (2008)
[875] Zhong, L.; Menzel, E. P.; Di Candia, R.; Eder, P.; Ihmig, M.; Baust, A.; Haeberlein, M.; Hoffmann, E.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Solano, E.; Deppe, F.; Marx, A.; Gross, R., Squeezing with a flux-driven Josephson parametric amplifier, New J. Phys., 15, 125013 (2013)
[876] Murch, K. W.; Weber, S. J.; Beck, K. M.; Ginossar, E.; Siddiqi, I., Reduction of the radiative decay of atomic coherence in squeezed vacuum, Nature, 499, 62 (2013)
[877] Barzanjeh, S.; DiVincenzo, D. P.; Terhal, B. M., Dispersive qubit measurement by interferometry with parametric amplifiers, Phys. Rev. B, 90, 134515 (2014)
[878] Tian, L.; Carmichael, H., Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom, Phys. Rev. A, 46, R6801 (1992)
[879] Leoński, W.; Tanaś, R., Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium, Phys. Rev. A, 49, R20 (1994)
[880] Miranowicz, A.; Leoński, W.; Dyrting, S.; Tanaś, R., Quantum state engineering in finite-dimensional Hilbert space, Acta Phys. Slov., 46, 451 (1996)
[881] Imamoḡlu, A.; Schmidt, H.; Woods, G.; Deutsch, M., Strongly interacting photons in a nonlinear cavity, Phys. Rev. Lett., 79, 1467 (1997)
[882] Wang, X.; Miranowicz, A.; Li, H.-R.; Nori, F., Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings, Phys. Rev. A, 94, 053858 (2016)
[883] Miranowicz, A.; Bartkowiak, M.; Wang, X.; Liu, Y.-X.; Nori, F., Testing nonclassicality in multimode fields: A unified derivation of classical inequalities, Phys. Rev. A, 82, 013824 (2010)
[884] Zou, X. T.; Mandel, L., Photon-antibunching and sub-Poissonian photon statistics, Phys. Rev. A, 41, 475 (1990)
[885] Faraon, A.; Fushman, I.; Englund, D.; Stoltz, N.; Petroff, P.; Vučković, J., Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade, Nat. Phys., 4, 859 (2008)
[886] Hoffman, A. J.; Srinivasan, S. J.; Schmidt, S.; Spietz, L.; Aumentado, J.; Türeci, H. E.; Houck, A. A., Dispersive photon blockade in a superconducting circuit, Phys. Rev. Lett., 107, 053602 (2011)
[887] Liu, Y.-X.; Xu, X.-W.; Miranowicz, A.; Nori, F., From blockade to transparency: Controllable photon transmission through a circuit-QED system, Phys. Rev. A, 89, 043818 (2014)
[888] Carmichael, H. J., Breakdown of photon blockade: a dissipative quantum phase transition in zero dimensions, Phys. Rev. X, 5, 031028 (2015)
[889] Fink, J. M.; Dombi, A.; Vukics, A.; Wallraff, A.; Domokos, P., Observation of the photon-blockade breakdown phase transition, Phys. Rev. X, 7, 011012 (2017)
[890] Leoński, W., Fock states in a Kerr medium with parametric pumping, Phys. Rev. A, 54, 3369 (1996)
[891] Leoński, W., Finite-dimensional coherent-state generation and quantum-optical nonlinear oscillator models, Phys. Rev. A, 55, 3874 (1997)
[892] Shamailov, S. S.; Parkins, A. S.; Collett, M. J.; Carmichael, H. J., Multi-photon blockade and dressing of the dressed states, Opt. Commun., 283, 766 (2010)
[893] Miranowicz, A.; Leoński, W.; Imoto, N., Quantum-optical states in finite-dimensional Hilbert space. I. General formalism, Adv. Chem. Phys., 119, I, 155 (2001)
[894] Leoński, W.; Miranowicz, A., Quantum-Optical states in finite-dimensional Hilbert space. II. State generation, Adv. Chem. Phys., 119, I, 195 (2001)
[895] Miranowicz, A.; Paprzycka, M.; Liu, Y.-X.; Bajer, J.; Nori, F., Two-photon and three-photon blockades in driven nonlinear systems, Phys. Rev. A, 87, 023809 (2013)
[896] Miranowicz, A.; Bajer, J.; Paprzycka, M.; Liu, Y.-X.; Zagoskin, A. M.; Nori, F., State-dependent photon blockade via quantum-reservoir engineering, Phys. Rev. A, 90, 033831 (2014)
[897] Hovsepyan, G. H.; Shahinyan, A. R.; Kryuchkyan, G. Y., Multiphoton blockades in pulsed regimes beyond stationary limits, Phys. Rev. A, 90, 013839 (2014)
[898] Wang, H.; Gu, X.; Liu, Y.-X.; Miranowicz, A.; Nori, F., Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system, Phys. Rev. A, 92, 033806 (2015)
[899] Miranowicz, A.; Bajer, J.; Lambert, N.; Liu, Y.-X.; Nori, F., Tunable multiphonon blockade in coupled nanomechanical resonators, Phys. Rev. A, 93, 013808 (2016)
[900] Hamsen, C.; Tolazzi, K. N.; Wilk, T.; Rempe, G., Two-photon blockade in an atom-driven cavity QED system, Phys. Rev. Lett., 118, 133604 (2017)
[901] Liu, Z.-P.; Wang, H.; Zhang, J.; Liu, Y.-X.; Wu, R.-B.; Li, C.-W.; Nori, F., Feedback-induced nonlinearity and superconducting on-chip quantum optics, Phys. Rev. A, 88, 063851 (2013)
[902] Leoński, W.; Miranowicz, A., Kerr nonlinear coupler and entanglement, J. Opt. B Quantum Semiclassical Opt., 6, S37 (2004)
[903] Miranowicz, A.; Leoński, W., Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers, J. Phys. B: At. Mol. Opt. Phys., 39, 1683 (2006)
[904] Liew, T. C.H.; Savona, V., Single photons from coupled quantum modes, Phys. Rev. Lett., 104, 183601 (2010)
[905] Ferretti, S.; Andreani, L. C.; Türeci, H. E.; Gerace, D., Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation, Phys. Rev. A, 82, 13841 (2010)
[906] Bamba, M.; Imamoḡlu, A.; Carusotto, I.; Ciuti, C., Origin of strong photon antibunching in weakly nonlinear photonic molecules, Phys. Rev. A, 83, 21802 (2011)
[907] Bamba, M.; Ciuti, C., Counter-polarized single-photon generation from the auxiliary cavity of a weakly nonlinear photonic molecule, Appl. Phys. Lett., 99, 171111 (2011)
[908] Flayac, H.; Savona, V., Input-output theory of the unconventional photon blockade, Phys. Rev. A, 88, 33836 (2013)
[909] Ferretti, S.; Savona, V.; Gerace, D., Optimal antibunching in passive photonic devices based on coupled nonlinear resonators, New J. Phys., 15, 25012 (2013)
[910] Xu, X.-W.; Li, Y.-J., Antibunching photons in a cavity coupled to an optomechanical system, J. Phys. B: At. Mol. Opt. Phys., 46, 35502 (2013)
[911] Lemonde, M.-A.; Didier, N.; Clerk, A. A., Antibunching and unconventional photon blockade with Gaussian squeezed states, Phys. Rev. A, 90, 63824 (2014)
[912] Flayac, H.; Savona, V., Single photons from dissipation in coupled cavities, Phys. Rev. A, 94, 013815 (2016)
[913] Eichler, C.; Salathe, Y.; Mlynek, J.; Schmidt, S.; Wallraff, A., Quantum limited amplification and entanglement in coupled nonlinear resonators, Phys. Rev. Lett., 113, 110502 (2014)
[914] Didier, N.; Pugnetti, S.; Blanter, Y. M.; Fazio, R., Detecting phonon blockade with photons, Phys. Rev. B, 84, 54503 (2011)
[915] Liu, Y.-X.; Miranowicz, A.; Gao, Y. B.; Bajer, J.; Sun, C. P.; Nori, F., Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators, Phys. Rev. A, 82, 032101 (2010)
[916] Wang, X.; Miranowicz, A.; Li, H. R.; Nori, F., Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit, Phys. Rev. A, 93, 63861 (2016)
[917] Carmichael, H. J., An open systems approach to quantum optics, (Lecture Notes in Physics Monographs, vol. 18 (1993), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg) · Zbl 1151.81300
[918] Plenio, M. B.; Knight, P. L., The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Modern Phys., 70, 101 (1998)
[919] Wiseman, H. M.; Milburn, G. J., Quantum Measurement and Control (2009), Cambridge University Press
[920] Bergquist, J. C.; Hulet, R. G.; Itano, W. M.; Wineland, D. J., Observation of quantum jumps in a single atom, Phys. Rev. Lett., 57, 1699 (1986)
[921] Peil, S.; Gabrielse, G., Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between fock states, Phys. Rev. Lett., 83, 1287 (1999)
[922] Gleyzes, S.; Kuhr, S.; Guerlin, C.; Bernu, J.; Deleglisé, S.; Busk Hoff, U.; Brune, M.; Raimond, J.-M.; Haroche, S., Quantum jumps of light recording the birth and death of a photon in a cavity, Nature, 446, 297 (2007)
[923] Guerlin, C.; Bernu, J.; Deleglisé, S.; Sayrin, C.; Gleyzes, S.; Kuhr, S.; Brune, M.; Raimond, J.-M.; Haroche, S., Progressive field-state collapse and quantum non-demolition photon counting, Nature, 448, 889 (2007)
[924] Yu, Y.; Zhu, S.-L.; Sun, G.; Wen, X.; Dong, N.; Chen, J.; Wu, P.; Han, S., Quantum jumps between macroscopic quantum states of a superconducting qubit coupled to a microscopic two-level system, Phys. Rev. Lett., 101, 157001 (2008)
[925] Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Wang, C.; Brecht, T.; Gao, Y. Y.; Shankar, S.; Hatridge, M.; Catelani, G.; Mirrahimi, M.; Frunzio, L.; Schoelkopf, R. J.; Glazman, L. I.; Devoret, M. H., Non-poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations, Phys. Rev. Lett., 113, 247001 (2014)
[926] Hatridge, M.; Shankar, S.; Mirrahimi, M.; Schackert, F.; Geerlings, K.; Brecht, T.; Sliwa, K. M.; Abdo, B.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J.; Devoret, M. H., Quantum back-action of an individual variable-strength measurement, Science, 339, 178 (2013) · Zbl 1355.81024
[927] Vool, U.; Shankar, S.; Mundhada, S. O.; Ofek, N.; Narla, A.; Sliwa, K.; Zalys-Geller, E.; Liu, Y.; Frunzio, L.; Schoelkopf, R. J.; Girvin, S. M.; Devoret, M. H., Continuous quantum nondemolition measurement of the transverse component of a qubit, Phys. Rev. Lett., 117, 133601 (2016)
[928] Kielich, S., Molecular Nonlinear Optics (1981), Nauka: Nauka Moscow
[929] Shen, Y. R., The Principles of Nonlinear Optics (1984), Wiley: Wiley New York
[930] Boyd, R., Nonlinear Optics (2008), Academic Press
[931] Walls, D. F.; Milburn, G. J., Quantum Optics, SpringerLink: Springer e-Books (2008), Springer · Zbl 1163.81001
[932] Tien, P. K., Parametric amplification and frequency mixing in propagating circuits, J. Appl. Phys., 29, 1347 (1958) · Zbl 0081.42201
[933] Eichler, C.; Bozyigit, D.; Lang, C.; Baur, M.; Steffen, L.; Fink, J. M.; Filipp, S.; Wallraff, A., Observation of two-mode squeezing in the microwave frequency domain, Phys. Rev. Lett., 107, 220503 (2011)
[934] Wang, Z. H.; Sun, C. P.; Li, Y., Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup, Phys. Rev. A, 91, 043801 (2015)
[935] T. Niemczyk, F. Deppe, E.P. Menzel, M.J. Schwarz, H. Huebl, F. Hocke, M. Häberlein, M. Danner, E. Hoffmann, A. Baust, E. Solano, J.J. Garcia-Ripoll, A. Marx, R. Gross, Selection rules in a strongly coupled qubit-resonator system, 2011. arXiv:1107.0810; T. Niemczyk, F. Deppe, E.P. Menzel, M.J. Schwarz, H. Huebl, F. Hocke, M. Häberlein, M. Danner, E. Hoffmann, A. Baust, E. Solano, J.J. Garcia-Ripoll, A. Marx, R. Gross, Selection rules in a strongly coupled qubit-resonator system, 2011. arXiv:1107.0810
[936] de Groot, P. C.; Lisenfeld, J.; Schouten, R. N.; Ashhab, S.; Lupaşcu, A.; Harmans, C. J.P. M.; Mooij, J. E., Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits, Nat. Phys., 6, 763 (2010)
[937] Lecocq, F.; Pop, I. M.; Matei, I.; Dumur, E.; Feofanov, A. K.; Naud, C.; Guichard, W.; Buisson, O., Coherent frequency conversion in a superconducting artificial atom with two internal degrees of freedom, Phys. Rev. Lett., 108, 107001 (2012)
[938] Koshino, K.; Inomata, K.; Yamamoto, T.; Nakamura, Y., Theory of deterministic down-conversion of single photons occurring at an impedance-matched \(\Lambda\) system, New J. Phys., 15, 115010 (2013)
[939] Nigg, S. E.; Paik, H.; Vlastakis, B.; Kirchmair, G.; Shankar, S.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.; Girvin, S. M., Black-Box superconducting circuit quantization, Phys. Rev. Lett., 108, 240502 (2012)
[940] Leib, M.; Deppe, F.; Marx, A.; Gross, R.; Hartmann, M. J., Networks of nonlinear superconducting transmission line resonators, New J. Phys., 14, 075024 (2012)
[941] Zhu, G.; Ferguson, D. G.; Manucharyan, V. E.; Koch, J., Circuit QED with fluxonium qubits: Theory of the dispersive regime, Phys. Rev. B, 87, 024510 (2013)
[942] Rebić, S.; Twamley, J.; Milburn, G. J., Giant Kerr nonlinearities in circuit quantum electrodynamics, Phys. Rev. Lett., 103, 150503 (2009)
[943] Yurke, B.; Stoler, D., Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett., 57, 13 (1986)
[944] Miranowicz, A.; Tanas, R.; Kielich, S., Generation of discrete superpositions of coherent states in the anharmonic oscillator model, Quantum Opt. J. Eur. Opt. Soc. Part B, 2, 253 (1990)
[945] Tanaś, R.; Gantsog, T.; Miranowicz, A.; Kielich, S., Quasi-probability distribution \(Q(\alpha, \alpha^\ast)\) versus phase distribution \(P(\theta)\) in a description of superpositions of coherent states, J. Opt. Soc. Amer. B, 8, 1576 (1991)
[946] Holland, E. T.; Vlastakis, B.; Heeres, R. W.; Reagor, M. J.; Vool, U.; Leghtas, Z.; Frunzio, L.; Kirchmair, G.; Devoret, M. H.; Mirrahimi, M.; Schoelkopf, R. J., Single-photon-resolved cross-kerr interaction for autonomous stabilization of photon-number states, Phys. Rev. Lett., 115, 180501 (2015)
[947] Lounis, B.; Orrit, M., Single-photon sources, Rep. Progr. Phys., 68, 1129 (2005)
[948] Buller, G. S.; Collins, R. J., Single-photon generation and detection, Meas. Sci. Technol., 21, 12002 (2010)
[949] Santori, C.; Fattal, D.; Yamamoto, Y., Single-photon Devices and Applications (2010), Wiley
[950] Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V., Invited review article: Single-photon sources and detectors, Rev. Sci. Instrum., 82, 071101 (2011)
[951] Single-Photon Generation and Detection: Physics and Applications, (Migdall, A.; Polyakov, S. V.; Fan, J.; Bienfang, J. C. (2013), Elsevier B.V.)
[952] Chunnilall, C. J.; Degiovanni, I. P.; Kück, S.; Müller, I.; Sinclair, A. G., Metrology of single-photon sources and detectors: a review, Opt. Eng., 53, 81910 (2014)
[953] Takeuchi, S., Recent progress in single-photon and entangled-photon generation and applications, Japan. J. Appl. Phys., 53, 30101 (2014)
[954] Brattke, S.; Varcoe, B. T.H.; Walther, H., Generation of photon number states on demand via cavity quantum electrodynamics, Phys. Rev. Lett., 86, 3534 (2001)
[955] McKeever, J.; Boca, A.; Boozer, A. D.; Miller, R.; Buck, J. R.; Kuzmich, A.; Kimble, H. J., Deterministic generation of single photons from one atom trapped in a cavity, Science, 303, 1992 (2004)
[956] Hijlkema, M.; Weber, B.; Specht, H. P.; Webster, S. C.; Kuhn, A.; Rempe, G., A single-photon server with just one atom, Nat. Phys., 3, 253 (2007)
[957] Nisbet-Jones, P. B.R.; Dilley, J.; Ljunggren, D.; Kuhn, A., Highly efficient source for indistinguishable single photons of controlled shape, New J. Phys., 13, 103036 (2011)
[958] Mücke, M.; Bochmann, J.; Hahn, C.; Neuzner, A.; Nölleke, C.; Reiserer, A.; Rempe, G.; Ritter, S., Generation of single photons from an atom-cavity system, Phys. Rev. A, 87, 63805 (2013)
[959] Reiserer, A.; Rempe, G., Cavity-based quantum networks with single atoms and optical photons, Rev. Modern Phys., 87, 1379 (2015)
[960] Keller, M.; Lange, B.; Hayasaka, K.; Lange, W.; Walther, H., Continuous generation of single photons with controlled waveform in an ion-trap cavity system, Nature, 431, 1075 (2004)
[961] Barros, H. G.; Stute, A.; Northup, T. E.; Russo, C.; Schmidt, P. O.; Blatt, R., Deterministic single-photon source from a single ion, New J. Phys., 11, 103004 (2009)
[962] Higginbottom, D. B.; Slodickǎ, L.; Araneda, G.; Lachman, L.; Filip, R.; Hennrich, M.; Blatt, R., Pure single photons from a trapped atom source, New J. Phys., 18, 93038 (2016)
[963] Yuan, Z.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M., Electrically driven single-photon source, Science, 295, 102 (2002)
[964] He, Y.-M.; He, Y.; Wei, Y.-J.; Wu, D.; Atatüre, M.; Schneider, C.; Höfling, S.; Kamp, M.; Lu, C.-Y.; Pan, J.-W., On-demand semiconductor single-photon source with near-unity indistinguishability, Nat. Nanotechnol., 8, 213 (2013)
[965] Versteegh, M. A.M.; Reimer, M. E.; Jöns, K. D.; Dalacu, D.; Poole, P. J.; Gulinatti, A.; Giudice, A.; Zwiller, V., Observation of strongly entangled photon pairs from a nanowire quantum dot, Nature Commun., 5, 5298 (2014)
[966] Ding, X.; He, Y.; Duan, Z.-C.; Gregersen, N.; Chen, M.-C.; Unsleber, S.; Maier, S.; Schneider, C.; Kamp, M.; Höfling, S.; Lu, C.-Y.; Pan, J.-W., On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar, Phys. Rev. Lett., 116, 20401 (2016)
[967] Daveau, R. S.; Balram, K. C.; Pregnolato, T.; Liu, J.; Lee, E. H.; Song, J. D.; Verma, V.; Mirin, R.; Nam, S. W.; Midolo, L.; Stobbe, S.; Srinivasan, K.; Lodahl, P., Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide, Optica, 4, 178 (2017)
[968] Loredo, J. C.; Zakaria, N. A.; Somaschi, N.; Anton, C.; de Santis, L.; Giesz, V.; Grange, T.; Broome, M. A.; Gazzano, O.; Coppola, G.; Sagnes, I.; Lemaitre, A.; Auffeves, A.; Senellart, P.; Almeida, M. P.; White, A. G., Scalable performance in solid-state single-photon sources, Optica, 3, 433 (2016)
[969] Soujaeff, A.; Takeuchi, S.; Sasaki, K.; Hasegawa, T.; Matsui, M., Heralded single photon source at 1550 nm from pulsed parametric down conversion, J. Modern Opt., 54, 467 (2007)
[970] Kolchin, P.; Belthangady, C.; Du, S.; Yin, G. Y.; Harris, S. E., Electro-Optic modulation of single photons, Phys. Rev. Lett., 101, 103601 (2008)
[971] Gulati, G. K.; Srivathsan, B.; Chng, B.; Cerè, A.; Matsukevich, D.; Kurtsiefer, C., Generation of an exponentially rising single-photon field from parametric conversion in atoms, Phys. Rev. A, 90, 33819 (2014)
[972] Parkins, A. S.; Marte, P.; Zoller, P.; Kimble, H. J., Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence, Phys. Rev. Lett., 71, 3095 (1993)
[973] Law, C. K.; Kimble, H. J., Deterministic generation of a bit-stream of single-photon pulses, J. Modern Opt., 44, 2067 (1997)
[974] Kuhn, A.; Hennrich, M.; Bondo, T.; Rempe, G., Controlled generation of single photons from a strongly coupled atom-cavity system, Appl. Phys. B, 69, 373 (1999)
[975] Brown, K. R.; Dani, K. M.; Stamper-Kurn, D. M.; Whaley, K. B., Deterministic optical Fock-state generation, Phys. Rev. A, 67, 43818 (2003)
[976] Vasilev, G. S.; Ljunggren, D.; Kuhn, A., Single photons made-to-measure, New J. Phys., 12, 63024 (2010)
[977] Vitanov, N. V.; Rangelov, A. A.; Shore, B. W.; Bergmann, K., Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Modern Phys., 89, 015006 (2017)
[978] Farrera, P.; Heinze, G.; Albrecht, B.; Ho, M.; Chávez, M.; Teo, C.; Sangouard, N.; de Riedmatten, H., Generation of single photons with highly tunable wave shape from a cold atomic ensemble, Nature Commun., 7, 13556 (2016)
[979] D. Sych, V. Averchenko, G. Leuchs, Shaping a single photon without interacting with it, 2016. arXiv:1605.00023; D. Sych, V. Averchenko, G. Leuchs, Shaping a single photon without interacting with it, 2016. arXiv:1605.00023
[980] Averchenko, V.; Sych, D.; Schunk, G.; Vogl, U.; Marquardt, C.; Leuchs, G., Temporal shaping of single photons enabled by entanglement, Phys. Rev. A, 96, 043822 (2017)
[981] Deleglisé, S.; Dotsenko, I.; Sayrin, C.; Bernu, J.; Brune, M.; Raimond, J.-M.; Haroche, S., Reconstruction of non-classical cavity field states with snapshots of their decoherence, Nature, 455, 510 (2008)
[982] Geremia, J. M., Deterministic and nondestructively verifiable preparation of photon number states, Phys. Rev. Lett., 97, 73601 (2006)
[983] Dotsenko, I.; Mirrahimi, M.; Brune, M.; Haroche, S.; Raimond, J.-M.; Rouchon, P., Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states, Phys. Rev. A, 80, 13805 (2009)
[984] Sayrin, C.; Dotsenko, I.; Zhou, X.; Peaudecerf, B.; Rybarczyk, T.; Gleyzes, S.; Rouchon, P.; Mirrahimi, M.; Amini, H.; Brune, M.; Raimond, J.-M. J.-M.; Haroche, S., Real-time quantum feedback prepares and stabilizes photon number states, Nature, 477, 73 (2011)
[985] Zhou, X.; Dotsenko, I.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; Gleyzes, S.; Raimond, J. M.; Brune, M.; Haroche, S., Field locked to a fock state by quantum feedback with single photon corrections, Phys. Rev. Lett., 108, 243602 (2012)
[986] Peaudecerf, B.; Sayrin, C.; Zhou, X.; Rybarczyk, T.; Gleyzes, S.; Dotsenko, I.; Raimond, J. M.; Brune, M.; Haroche, S., Quantum feedback experiments stabilizing Fock states of light in a cavity, Phys. Rev. A, 87, 42320 (2013)
[987] Wilson, C. M.; Duty, T.; Sandberg, M.; Persson, F.; Shumeiko, V.; Delsing, P., Photon generation in an electromagnetic cavity with a time-dependent boundary, Phys. Rev. Lett., 105, 233907 (2010)
[988] Leppäkangas, J.; Johansson, G.; Marthaler, M.; Fogelström, M., Input-output description of microwave radiation in the dynamical Coulomb blockade, New J. Phys., 16, 15015 (2014)
[989] Leppäkangas, J.; Fogelström, M.; Grimm, A.; Hofheinz, M.; Marthaler, M.; Johansson, G., Antibunched photons from inelastic cooper-pair tunneling, Phys. Rev. Lett., 115, 27004 (2015)
[990] Leppäkangas, J.; Fogelström, M.; Marthaler, M.; Johansson, G., Correlated cooper pair transport and microwave photon emission in the dynamical Coulomb blockade, Phys. Rev. B, 93, 14506 (2016)
[991] Peng, Z. H.; de Graaf, S. E.; Tsai, J. S.; Astafiev, O. V., Tuneable on-demand single-photon source in the microwave range, Nature Commun., 7, 12588 (2016)
[992] Sathyamoorthy, S. R.; Bengtsson, A.; Bens, S.; Simoen, M.; Delsing, P.; Johansson, G., Simple robust and on-demand generation of single and correlated photons, Phys. Rev. A, 93, 063823 (2016)
[993] Joo, J.; Lee, S.-Y.; Kim, J., Implementation of traveling odd Schrödinger cat states in circuit-QED, Photonics, 3, 57 (2016)
[994] Vogel, K.; Akulin, V. M.; Schleich, W. P., Quantum state engineering of the radiation field, Phys. Rev. Lett., 71, 1816 (1993)
[995] Law, C. K.; Eberly, J. H., Arbitrary control of a quantum electromagnetic field, Phys. Rev. Lett., 76, 1055 (1996)
[996] Liu, Y.-X.; Wei, L.; Nori, F., Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit, Phys. Rev. A, 71, 063820 (2005)
[997] Wang, H.; Hofheinz, M.; Ansmann, M.; Bialczak, R. C.; Lucero, E.; Neeley, M.; O’Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Cleland, A. N.; Martinis, J. M.; O’Connell, A.; Sank, D.; Weides, M.; Wenner, J.; Cleland, A. N.; Martinis, J. M., Decoherence dynamics of complex photon states in a superconducting circuit, Phys. Rev. Lett., 103, 200404 (2009)
[998] Santos, M. F., Universal and deterministic manipulation of the quantum state of harmonic oscillators: A route to unitary gates for fock state qubits, Phys. Rev. Lett., 95, 010504 (2005)
[999] Heeres, R. W.; Vlastakis, B.; Holland, E.; Krastanov, S.; Albert, V. V.; Frunzio, L.; Jiang, L.; Schoelkopf, R. J., Cavity state manipulation using photon-number selective phase gates, Phys. Rev. Lett., 115, 137002 (2015)
[1000] Cirac, J. I.; Zoller, P.; Kimble, H. J.; Mabuchi, H., Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett., 78, 3221 (1997)
[1001] Jahne, K.; Yurke, B.; Gavish, U., High-fidelity transfer of an arbitrary quantum state between harmonic oscillators, Phys. Rev. A, 75, 010301 (2007)
[1002] Korotkov, A. N., Flying microwave qubits with nearly perfect transfer efficiency, Phys. Rev. B, 84, 014510 (2011)
[1003] Sete, E. A.; Mlinar, E.; Korotkov, A. N., Robust quantum state transfer using tunable couplers, Phys. Rev. B, 91, 144509 (2015)
[1004] Wenner, J.; Yin, Y.; Chen, Y.; Barends, R.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Megrant, A.; Mutus, J. Y.; Neill, C.; O’Malley, P. J.J.; Roushan, P.; Sank, D.; Vainsencher, A.; White, T. C.; Korotkov, A. N.; Cleland, A. N.; Martinis, J. M., Catching time-reversed microwave coherent state photons with 99.4
[1005] Allman, M. S.; Altomare, F.; Whittaker, J. D.; Cicak, K.; Li, D.; Sirois, A.; Strong, J.; Teufel, J. D.; Simmonds, R. W., Rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator, Phys. Rev. Lett., 104, 177004 (2010)
[1006] Pechal, M.; Huthmacher, L.; Eichler, C.; Zeytinolu, S.; Abdumalikov, A. A.; Berger, S.; Wallraff, A.; Filipp, S., Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics, Phys. Rev. X, 4, 41010 (2014)
[1007] Zeytinolu, S.; Pechal, M.; Berger, S.; Abdumalikov, A. A.; Wallraff, A.; Filipp, S., Microwave-induced amplitude- and phase-tunable qubit-resonator coupling in circuit quantum electrodynamics, Phys. Rev. A, 91, 043846 (2015)
[1008] Yin, Y.; Chen, Y.; Sank, D.; O’Malley, P. J.J.; White, T. C.; Barends, R.; Kelly, J.; Lucero, E.; Mariantoni, M.; Megrant, A.; Neill, C.; Vainsencher, A.; Wenner, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, J. M., Catch and release of microwave photon states, Phys. Rev. Lett., 110, 107001 (2013)
[1009] Pierre, M.; Svensson, I. M.; Raman Sathyamoorthy, S.; Johansson, G.; Delsing, P., Storage and on-demand release of microwaves using superconducting resonators with tunable coupling, Appl. Phys. Lett., 104, 232604 (2014)
[1010] De Liberato, S.; Ciuti, C.; Carusotto, I., Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum rabi frequency, Phys. Rev. Lett., 98, 103602 (2007)
[1011] Gevorgyan, T. V.; Shahinyan, A. R.; Kryuchkyan, G. Y., Generation of Fock states and qubits in periodically pulsed nonlinear oscillators, Phys. Rev. A, 85, 53802 (2012)
[1012] Wei, L. F.; Johansson, J. R.; Cen, L. X.; Ashhab, S.; Nori, F., Controllable coherent population transfers in superconducting qubits for quantum computing, Phys. Rev. Lett., 100, 113601 (2008)
[1013] Falci, G.; La Cognata, A.; Berritta, M.; D’Arrigo, A.; Paladino, E.; Spagnolo, B., Design of a Lambda system for population transfer in superconducting nanocircuits, Phys. Rev. B, 87, 214515 (2013)
[1014] Chen, J.; Wei, L. F., Deterministic implementations of quantum gates with circuit QEDs via Stark-chirped rapid adiabatic passages, Phys. Lett. A, 379, 2549 (2015) · Zbl 1361.81030
[1015] Di Stefano, P. G.; Paladino, E.; Pope, T. J.; Falci, G., Coherent manipulation of noise-protected superconducting artificial atoms in the lambda scheme, Phys. Rev. A, 93, 051801 (2016)
[1016] Vepsäläinen, A.; Danilin, S.; Paladino, E.; Falci, G.; Paraoanu, G. S., Quantum control in qutrit systems using hybrid Rabi-STIRAP Pulses, Photonics, 3, 62 (2016)
[1017] Falci, G.; Di Stefano, P. G.; Ridolfo, A.; D’Arrigo, A.; Paraoanu, G. S.; Paladino, E., Advances in quantum control of three-level superconducting circuit architectures, Fortschr. Phys., 65, 1600077 (2017) · Zbl 1371.81154
[1018] Kindel, W. F.; Schroer, M. D.; Lehnert, K. W., Generation and efficient measurement of single photons from fixed-frequency superconducting qubits, Phys. Rev. A, 93, 033817 (2016)
[1019] Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S., Stimulated raman adiabatic passage in a three-level superconducting circuit, Nature Commun., 7, 10628 (2016)
[1020] Premaratne, S. P.; Wellstood, F. C.; Palmer, B. S., Microwave photon Fock state generation by stimulated Raman adiabatic passage, Nature Commun., 8, 14148 (2017)
[1021] Juliusson, K.; Bernon, S.; Zhou, X.; Schmitt, V.; l. Sueur, H.; Bertet, P.; Vion, D.; Mirrahimi, M.; Rouchon, P.; Esteve, D., Manipulating Fock states of a harmonic oscillator while preserving its linearity, Phys. Rev. A, 94, 063861 (2016)
[1022] Armour, A. D.; Blencowe, M. P.; Brahimi, E.; Rimberg, A. J., Universal quantum fluctuations of a cavity mode driven by a josephson junction, Phys. Rev. Lett., 111, 247001 (2013)
[1023] Gramich, V.; Kubala, B.; Rohrer, S.; Ankerhold, J., From coulomb-blockade to nonlinear quantum dynamics in a superconducting circuit with a resonator, Phys. Rev. Lett., 111, 247002 (2013)
[1024] Dambach, S.; Kubala, B.; Gramich, V.; Ankerhold, J., Time-resolved statistics of nonclassical light in Josephson photonics, Phys. Rev. B, 92, 54508 (2015)
[1025] Souquet, J.-R.; Clerk, A. A., Fock-state stabilization and emission in superconducting circuits using dc-biased Josephson junctions, Phys. Rev. A, 93, 60301 (2016)
[1026] Hofheinz, M.; Portier, F.; Baudouin, Q.; Joyez, P.; Vion, D.; Bertet, P.; Roche, P.; Esteve, D., Bright side of the coulomb blockade, Phys. Rev. Lett., 106, 217005 (2011)
[1027] Boto, A. N.; Kok, P.; Abrams, D. S.; Braunstein, S. L.; Williams, C. P.; Dowling, J. P., Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit, Phys. Rev. Lett., 85, 2733 (2000)
[1028] Mitchell, M. W.; Lundeen, J. S.; Steinberg, A. M., Super-resolving phase measurements with a multiphoton entangled state, Nature, 429, 161 (2004)
[1029] Nagata, T.; Okamoto, R.; O’Brien, J. L.; Sasaki, K.; Takeuchi, S., Beating the standard quantum limit with four-entangled photons, Science, 316, 726 (2007)
[1030] Vergyris, P.; Meany, T.; Lunghi, T.; Sauder, G.; Downes, J.; Steel, M. J.; Withford, M. J.; Alibart, O.; Tanzilli, S., On-chip generation of heralded photon-number states, Sci. Rep., 6, 35975 (2016)
[1031] Merkel, S. T.; Wilhelm, F. K., Generation and detection of NOON states in superconducting circuits, New J. Phys., 12, 093036 (2010)
[1032] Strauch, F. W.; Jacobs, K.; Simmonds, R. W., Arbitrary control of entanglement between two superconducting resonators, Phys. Rev. Lett., 105, 050501 (2010)
[1033] Su, Q.-P.; Yang, C.-P.; Zheng, S.-B., Fast and simple scheme for generating NOON states of photons in circuit QED, Sci. Rep., 4, 3898 (2014)
[1034] Xiong, S.-J.; Sun, Z.; Liu, J.-M.; Liu, T.; Yang, C.-P., Efficient scheme for generation of photonic NOON states in circuit QED, Opt. Lett., 40, 2221 (2015)
[1035] Wang, H.; Mariantoni, M.; Bialczak, R. C.; Lenander, M.; Lucero, E.; Neeley, M.; O’Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yamamoto, T.; Yin, Y.; Zhao, J.; Martinis, J. M.; Cleland, A. N., Deterministic entanglement of photons in two superconducting microwave resonators, Phys. Rev. Lett., 106, 060401 (2011)
[1036] Mariantoni, M.; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, R. C.; Chen, Y.; Lenander, M.; Lucero, E.; O’Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yin, Y.; Zhao, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, J. M., Implementing the quantum von Neumann architecture with superconducting circuits, Science, 334, 61 (2011)
[1037] Dambach, S.; Kubala, B.; Ankerhold, J., Time-resolved statistics of photon pairs in two-cavity Josephson photonics, Fortschr. Phys. (2016) · Zbl 1371.81414
[1038] Dambach, S.; Kubala, B.; Ankerhold, J., Generating entangled quantum microwaves in a Josephson-photonics device, New J. Phys., 19, 023027 (2016)
[1039] Wang, C.; Gao, Y. Y.; Reinhold, P.; Heeres, R. W.; Ofek, N.; Chou, K.; Axline, C.; Reagor, M.; Blumoff, J.; Sliwa, K. M.; Frunzio, L.; Girvin, S. M.; Jiang, L.; Mirrahimi, M.; Devoret, M. H.; Schoelkopf, R. J., A Schrödinger cat living in two boxes, Science, 352, 1087 (2016) · Zbl 1355.81020
[1040] Hadfield, R., Single-photon detectors for optical quantum information applications, Nat. Photonics, 3, 696 (2009)
[1041] Braginsky, V. B.; Khalili, F. Y., Quantum nondemolition measurements: the route from toys to tools, Rev. Modern Phys., 68, 1 (1996)
[1042] Braginsky, V. B.; Vorontsov, Y. I.; Kip, S. T., Quantum nondemolition measurements, Science, 209, 547 (1980)
[1043] Braginsky, V. B.; Vorontsov, Y. I., Quantum-mechanical limitations in macroscopic experiments and modern experimental technique, Sov. Phys. Uspekhi, 17, 644 (1975)
[1044] Thorne, K. S.; Drever, R. W.P.; Caves, C. M.; Zimmermann, M.; Sandberg, V. D., Quantum nondemolition measurements of harmonic oscillators, Phys. Rev. Lett., 40, 667 (1978)
[1045] Unruh, W. G., Quantum nondemolition and gravity-wave detection, Phys. Rev. D, 19, 2888 (1979)
[1046] Caves, C. M.; Thorne, K. S.; Drever, R. W.P.; Sandberg, V. D.; Zimmermann, M., On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle, Rev. Modern Phys., 52, 341 (1980)
[1047] Milburn, G. J.; Walls, D. F., Quantum nondemolition measurements via quadratic coupling, Phys. Rev. A, 28, 2065 (1983)
[1048] Yurke, B., Optical back-action-evading amplifiers, J. Opt. Soc. Amer. B, 2, 732 (1985)
[1049] Roch, J. F.; Roger, G.; Grangier, P.; Courty, J.-M.; Reynaud, S., Quantum non-demolition measurements in optics: a review and some recent experimental results, Appl. Phys. B, 55, 291 (1992)
[1050] Grangier, P.; Levenson, J. A.; Poizat, J.-P., Characterization of quantum non-demolition measurements in optics, Nature, 396, 537 (1998)
[1051] Clerk, A. A.; Marquardt, F.; Jacobs, K., Back-action evasion and squeezing of a mechanical resonator using a cavity detector, New J. Phys., 10, 95010 (2008)
[1052] Suh, J.; Weinstein, A. J.; Lei, C. U.; Wollman, E. E.; Steinke, S. K.; Meystre, P.; Clerk, A. A.; Schwab, K. C., Mechanically detecting and avoiding the quantum fluctuations of a microwave field, Science, 344, 1262 (2014)
[1053] Brune, M.; Haroche, S.; Lefevre, V.; Raimond, J. M.; Zagury, N., Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection, Phys. Rev. Lett., 65, 976 (1990)
[1054] Nogues, G.; Rauschenbeutel, A.; Osnaghi, S.; Brune, M.; Raimond, J. M.; Haroche, S., Seeing a single photon without destroying it, Nature, 400, 239 (1999)
[1055] Bernu, J.; Deléglise, S.; Sayrin, C.; Kuhr, S.; Dotsenko, I.; Brune, M.; Raimond, J. M.; Haroche, S., Freezing coherent field growth in a cavity by the quantum Zeno effect, Phys. Rev. Lett., 101, 180402 (2008)
[1056] Brune, M.; Bernu, J.; Guerlin, C.; Deléglise, S.; Sayrin, C.; Gleyzes, S.; Kuhr, S.; Dotsenko, I.; Raimond, J. M.; Haroche, S., Process tomography of field damping and measurement of Fock state lifetimes by quantum nondemolition photon counting in a cavity, Phys. Rev. Lett., 101, 240402 (2008)
[1057] Haroche, S., Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Modern Phys., 85, 1083 (2013)
[1058] Johnson, B. R., Controlling Photons in Superconducting Electrical Circuits (2011), Yale University, (Ph.D. thesis)
[1059] Ng, H. T.; Nori, F., Quantum phase measurement and Gauss sum factorization of large integers in a superconducting circuit, Phys. Rev. A, 82, 042317 (2010)
[1060] Lita, A. E.; Miller, A. J.; Nam, S. W., Counting near-infrared single-photons with 95
[1061] Marsili, F.; Verma, V. B.; Stern, J. A.; Harrington, S.; Lita, A. E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M. D.; Mirin, R. P.; Nam, S. W., Detecting single infrared photons with 93
[1062] Renema, J. J.; Gaudio, R.; Wang, Q.; Zhou, Z.; Gaggero, A.; Mattioli, F.; Leoni, R.; Sahin, D.; de Dood, M. J.A.; Fiore, A.; van Exter, M. P., Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector, Phys. Rev. Lett., 112, 117604 (2014)
[1063] Dauler, E. A.; Grein, M. E.; Kerman, A. J.; Marsili, F.; Miki, S.; Nam, S. W.; Shaw, M. D.; Terai, H.; Verma, V. B.; Yamashita, T., Review of superconducting nanowire single-photon detector system design options and demonstrated performance, Opt. Eng., 53, 81907 (2014)
[1064] Sathyamoorthy, S. R.; Stace, T. M.; Johansson, G., Detecting itinerant single microwave photons, C. R. Phys., 17, 756 (2016)
[1065] Nakamura, Y.; Yamamoto, T., Breakthroughs in photonics 2012: breakthroughs in microwave quantum photonics in superconducting circuits, IEEE Photon. J., 5, 0701406 (2013)
[1066] Reiserer, A.; Ritter, S.; Rempe, G., Nondestructive detection of an optical photon, Science, 342, 1349 (2013)
[1067] Aguado, R.; Kouwenhoven, L. P., Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors, Phys. Rev. Lett., 84, 1986 (2000)
[1068] Gustavsson, S.; Studer, M.; Leturcq, R.; Ihn, T.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C., Frequency-selective single-photon detection using a double quantum dot, Phys. Rev. Lett., 99, 206804 (2007)
[1069] Romero, G.; García-Ripoll, J. J.; Solano, E., Microwave photon detector in circuit QED, Phys. Rev. Lett., 102, 173602 (2009)
[1070] Romero, G.; García-Ripoll, J. J.; Solano, E., Photodetection of propagating quantum microwaves in circuit QED, Phys. Scr., T137, 14004 (2009)
[1071] Chen, Y.-F. F.; Hover, D.; Sendelbach, S.; Maurer, L.; Merkel, S. T.; Pritchett, E. J.; Wilhelm, F. K.; McDermott, R., Microwave photon counter based on josephson junctions, Phys. Rev. Lett., 107, 217401 (2011)
[1072] Hanbury Brown, R.; Twiss, R. Q., Correlation between photons in two coherent beams of light, Nature, 177, 27 (1956)
[1073] Poudel, A.; McDermott, R.; Vavilov, M. G., Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction, Phys. Rev. B, 86, 174506 (2012)
[1074] Govia, L. C.G.; Pritchett, E. J.; Merkel, S. T.; Pineau, D.; Wilhelm, F. K., Theory of Josephson photomultipliers: Optimal working conditions and back action, Phys. Rev. A, 86, 32311 (2012)
[1075] M. Schöndorf, L.C.G. Govia, M. Vavilov, R. McDermott, F.K. Wilhelm, Optimizing single microwave-photon detection: Input-Output theory, 2016. arXiv:1609.08887; M. Schöndorf, L.C.G. Govia, M. Vavilov, R. McDermott, F.K. Wilhelm, Optimizing single microwave-photon detection: Input-Output theory, 2016. arXiv:1609.08887
[1076] Imoto, N.; Haus, H. A.; Yamamoto, Y., Quantum nondemolition measurement of the photon number via the optical Kerr effect, Phys. Rev. A, 32, 2287 (1985)
[1077] Munro, W. J.; Nemoto, K.; Beausoleil, R. G.; Spiller, T. P., High-efficiency quantum-nondemolition single-photon-number-resolving detector, Phys. Rev. A, 71, 33819 (2005)
[1078] Greentree, A. D.; Beausoleil, R. G.; Hollenberg, L. C.L.; Munro, W. J.; Nemoto, K.; Prawer, S.; Spiller, T. P., Single photon quantum non-demolition measurements in the presence of inhomogeneous broadening, New J. Phys., 11, 93005 (2009)
[1079] Matsuda, N.; Shimizu, R.; Mitsumori, Y.; Kosaka, H.; Edamatsu, K., Observation of optical-fibre Kerr nonlinearity at the single-photon level, Nat. Photonics, 3, 95 (2009)
[1080] Venkataraman, V.; Saha, K.; Gaeta, A. L., Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing, Nat. Photonics, 7, 138 (2012)
[1081] Perrella, C.; Light, P. S.; Anstie, J. D.; Benabid, F.; Stace, T. M.; White, A. G.; Luiten, A. N., High-efficiency cross-phase modulation in a gas-filled waveguide, Phys. Rev. A, 88, 13819 (2013)
[1082] Shapiro, J. H., Single-photon Kerr nonlinearities do not help quantum computation, Phys. Rev. A, 73, 062305 (2006)
[1083] Shapiro, J. H.; Razavi, M., Continuous-time cross-phase modulation and quantum computation, New J. Phys., 9, 16 (2007)
[1084] Gea-Banacloche, J., Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets, Phys. Rev. A, 81, 43823 (2010)
[1085] Fan, B.; Johansson, G.; Combes, J.; Milburn, G. J.; Stace, T. M., Nonabsorbing high-efficiency counter for itinerant microwave photons, Phys. Rev. B, 90, 35132 (2014)
[1086] Xia, K.; Johnsson, M.; Knight, P. L.; Twamley, J., Cavity-free scheme for nondestructive detection of a single optical photon, Phys. Rev. Lett., 116, 23601 (2016)
[1087] Govenius, J.; Lake, R. E.; Tan, K. Y.; Pietilä, V.; Julin, J. K.; Maasilta, I. J.; Virtanen, P.; Möttönen, M., Microwave nanobolometer based on proximity josephson junctions, Phys. Rev. B, 90, 64505 (2014)
[1088] Gasparinetti, S.; Viisanen, K. L.; Saira, O.-P.; Faivre, T.; Arzeo, M.; Meschke, M.; Pekola, J. P., Fast electron thermometry for ultrasensitive calorimetric detection, Phys. Rev. Appl., 3, 14007 (2015)
[1089] Govenius, J.; Lake, R. E.; Tan, K. Y.; M̈ottönen, M., Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions, Phys. Rev. Lett., 117, 030802 (2016)
[1090] Penasa, M.; Gerlich, S.; Rybarczyk, T.; Métillon, V.; Brune, M.; Raimond, J. M.; Haroche, S.; Davidovich, L.; Dotsenko, I., Measurement of a microwave field amplitude beyond the standard quantum limit, Phys. Rev. A, 94, 22313 (2016)
[1091] Schoelkopf, R. J.; Wahlgren, P.; Kozhevnikov, A. A.; Delsing, P.; Prober, D. E., The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer, Science, 280, 1238 (1998)
[1092] Gustafsson, M. V.; Santos, P. V.; Johansson, G.; Delsing, P., Local probing of propagating acoustic waves in a gigahertz echo chamber, Nat. Phys., 8, 338 (2012)
[1093] Govia, L. C.G.; Pritchett, E. J.; Xu, C.; Plourde, B. L.T.; Vavilov, M. G.; Wilhelm, F. K.; McDermott, R., High-fidelity qubit measurement with a microwave-photon counter, Phys. Rev. A, 90, 62307 (2014)
[1094] Govia, L. C.G.; Pritchett, E. J.; Plourde, B. L.T.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K., Scalable two- and four-qubit parity measurement with a threshold photon counter, Phys. Rev. A, 92, 022335 (2015)
[1095] Govenius, J.; Matsuzaki, Y.; Savenko, I. G.; Möttönen, M., Parity measurement of remote qubits using dispersive coupling and photodetection, Phys. Rev. A, 92, 042305 (2015)
[1096] H. Zheng, M. Silveri, R.T. Brierley, S.M. Girvin, K.W. Lehnert, Accelerating dark-matter axion searches with quantum measurement technology, 2016. arXiv:1607.02529; H. Zheng, M. Silveri, R.T. Brierley, S.M. Girvin, K.W. Lehnert, Accelerating dark-matter axion searches with quantum measurement technology, 2016. arXiv:1607.02529
[1097] Jennewein, T.; Simon, C.; Weihs, G.; Weinfurter, H.; Zeilinger, A., Quantum cryptography with entangled photons, Phys. Rev. Lett., 84, 4729 (2000)
[1098] Lo, H.-K.; Curty, M.; Tamaki, K., Secure quantum key distribution, Nat. Photonics, 8, 595 (2014)
[1099] Weihs, G.; Jennewein, T.; Simon, C.; Weinfurter, H.; Zeilinger, A., Violation of Bell’s inequality under strict Einstein locality conditions, Phys. Rev. Lett., 81, 5039 (1998) · Zbl 0947.81013
[1100] Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.; Nam, S. W.; Ursin, R.; Zeilinger, A., Bell violation using entangled photons without the fair-sampling assumption, Nature, 497, 227 (2013)
[1101] Bouwmeester, D.; Pan, J.-W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Experimental quantum teleportation, Nature, 390, 575 (1997) · Zbl 1369.81006
[1102] Carmichael, H. J., Statistical Methods in Quantum Optics 1 (1999), Springer · Zbl 0918.60095
[1103] Breuer, H. P.; Petruccione, F., The Theory of Open Quantum Systems (2002), Oxford University Press · Zbl 1053.81001
[1104] Lindblad, G., On the generators of quantum dynamical semigroups, Comm. Math. Phys., 48, 119 (1976) · Zbl 0343.47031
[1105] Wiseman, H. M., Quantum Trajectories and Feedback (1994), University of Queensland: University of Queensland Brisbane, (Ph.D. thesis)
[1106] Lvovsky, A. I.; Raymer, M. G., Continuous-variable optical quantum-state tomography, Rev. Modern Phys., 81, 299 (2009)
[1107] Smithey, D. T.; Beck, M.; Raymer, M. G.; Faridani, A., Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Phys. Rev. Lett., 70, 1244 (1993)
[1108] Wiseman, H. M.; Milburn, G. J., Quantum theory of field-quadrature measurements, Phys. Rev. A, 47, 642 (1993)
[1109] Bradley, R. F., Cryogenic, low-noise, balanced amplifiers for the 300-1200 MHz band using heterostructure field-effect transistors, Nuclear Phys. B Proc. Suppl., 72, 137 (1999)
[1110] Wadefalk, N.; Mellberg, A.; Angelov, I.; Barsky, M. E.; Bui, S.; Choumas, E.; Grundbacher, R. W.; Kollberg, E. L.; Lai, R.; Rorsman, N.; Starski, P.; Stenarson, J.; Streit, D. C.; Zirath, H., Cryogenic wide-band ultra-low-noise if amplifiers operating at ultra-low DC power, IEEE Trans. Microw. Theory Tech., 51, 1705 (2003)
[1111] Pospieszalski, M. W., Extremely low-noise amplification with cryogenic FETs and HFETs: 1970-2004, IEEE Microw. Mag., 6, 62 (2005)
[1112] Clerk, A. A.; Devoret, M. H.; Girvin, S. M.; Marquardt, F.; Schoelkopf, R. J., Introduction to quantum noise, measurement, and amplification, Rev. Modern Phys., 82, 1155 (2010) · Zbl 1205.81001
[1113] Schackert, O., A Practical Quantum-Limited Parametric Amplifier Based on A Practical Quantum-Limited Parametric Amplifier Based on the Josephson Ring Modulator (2013), Yale, (Ph.D. thesis)
[1114] Roy, A.; Devoret, M., Introduction to parametric amplification of quantum signals with Josephson circuits, C. R. Phys., 17, 740 (2016)
[1115] Haus, H. A.; Mullen, J. A., Quantum noise in linear amplifiers, Phys. Rev., 128, 2407 (1962)
[1116] Caves, C. M., Quantum limits on noise in linear amplifiers, Phys. Rev. D, 26, 1817 (1982)
[1117] Xiang, G. Y.; Ralph, T. C.; Lund, A. P.; Walk, N.; Pryde, G. J., Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics, 4, 316 (2010)
[1118] Zimmer, H., Parametric amplification of microwaves in superconducting Josephson tunnel junctions, Appl. Phys. Lett., 10, 193 (1967)
[1119] Feldman, M. J.; Parrish, P. T.; Chiao, R. Y., Parametric amplification by unbiased Josephson junctions, J. Appl. Phys., 46, 4031 (1975)
[1120] Wahlsten, S.; Rudner, S.; Claeson, T., Parametric amplification in arrays of Josephson tunnel junctions, Appl. Phys. Lett., 30, 298 (1977)
[1121] Silver, A. H.; Pridmore-Brown, D. C.; Sandell, R. D.; Hurrell, J., Parametric properties of SQUID lattice arrays, IEEE Trans. Magn., 17, 412 (1981)
[1122] Sweeny, M.; Mahler, R., A travelling-wave parametric amplifier utilizing Josephson junctions, IEEE Trans. Magn., 21, 654 (1985)
[1123] Movshovich, R.; Yurke, B.; Kaminsky, P. G.; Smith, A. D.; Silver, A. H.; Simon, R. W.; Schneider, M. V., Observation of zero-point squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., 65, 1419 (1990)
[1124] Yurke, B.; Roukes, M. L.; Movshovich, R.; Pargellis, A. N., A low-noise series-array Josephson junction parametric amplifier, Appl. Phys. Lett., 69, 3078 (1996)
[1125] Boulant, N.; Ithier, G.; Meeson, P.; Nguyen, F.; Vion, D.; Esteve, D.; Siddiqi, I.; Vijay, R.; Rigetti, C.; Pierre, F.; Devoret, M., Quantum nondemolition readout using a Josephson bifurcation amplifier, Phys. Rev. B, 76, 14525 (2007)
[1126] Manucharyan, V. E.; Boaknin, E.; Metcalfe, M.; Vijay, R.; Siddiqi, I.; Devoret, M., Microwave bifurcation of a Josephson junction: Embedding-circuit requirements, Phys. Rev. B, 76, 14524 (2007)
[1127] Metcalfe, M.; Boaknin, E.; Manucharyan, V.; Vijay, R.; Siddiqi, I.; Rigetti, C.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H., Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier, Phys. Rev. B, 76, 174516 (2007)
[1128] Naaman, O.; Aumentado, J.; Friedland, L.; Wurtele, J. S.; Siddiqi, I., Phase-locking transition in a chirped superconducting Josephson resonator, Phys. Rev. Lett., 101, 117005 (2008)
[1129] Siddiqi, I.; Vijay, R.; Pierre, F.; Wilson, C. M.; Frunzio, L.; Metcalfe, M.; Rigetti, C.; Schoelkopf, R. J.; Devoret, M. H.; Vion, D.; Esteve, D., Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction, Phys. Rev. Lett., 94, 027005 (2005)
[1130] Castellanos-Beltran, M. A.; Lehnert, K. W., Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator, Appl. Phys. Lett., 91, 083509 (2007)
[1131] Castellanos-Beltran, M. A.; Irwin, K. D.; Vale, L. R.; Hilton, G. C.; Lehnert, K. W., Bandwidth and dynamic range of a widely tunable josephson parametric amplifier, IEEE Trans. Appl. Supercond., 19, 944 (2009)
[1132] Kamal, A.; Marblestone, A.; Devoret, M., Signal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier, Phys. Rev. B, 79, 184301 (2009)
[1133] Castellanos-Beltran, M. A., Development of a Josephson Parametric Amplifier for the Preparation and Detection of Nonclassical States of Microwave Fields (2010), University of Colorado: University of Colorado Boulder, (Ph.D. thesis)
[1134] Murch, K. W.; Weber, S. J.; Macklin, C.; Siddiqi, I., Observing single quantum trajectories of a superconducting quantum bit, Nature, 502, 211 (2013)
[1135] Mutus, J. Y.; White, T. C.; Jeffrey, E.; Sank, D.; Barends, R.; Bochmann, J.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Kelly, J.; Megrant, A.; Neill, C.; O’Malley, P. J.J.; Roushan, P.; Vainsencher, A.; Wenner, J.; Siddiqi, I.; Vijay, R.; Cleland, A. N.; Martinis, J. M., Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line, Appl. Phys. Lett., 103, 122602 (2013)
[1136] Wustmann, W.; Shumeiko, V., Parametric resonance in tunable superconducting cavities, Phys. Rev. B, 87, 184501 (2013)
[1137] de Lange, G.; Ristè, D.; Tiggelman, M. J.; Eichler, C.; Tornberg, L.; Johansson, G.; Wallraff, A.; Schouten, R. N.; DiCarlo, L., Reversing quantum trajectories with analog feedback, Phys. Rev. Lett., 112, 080501 (2014)
[1138] Eichler, C.; Wallraff, A., Controlling the dynamic range of a Josephson parametric amplifier, EPJ Quantum Technol., 1, 2 (2014)
[1139] Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Neill, C.; O’Malley, P. J.J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Sundqvist, K. M.; Cleland, A. N.; Martinis, J. M., Strong environmental coupling in a Josephson parametric amplifier, Appl. Phys. Lett., 104, 263513 (2014)
[1140] Simoen, M.; Chang, C. W.S.; Krantz, P.; Bylander, J.; Wustmann, W.; Shumeiko, V.; Delsing, P.; Wilson, C. M., Characterization of a multimode coplanar waveguide parametric amplifier, J. Appl. Phys., 118, 154501 (2015)
[1141] Zhou, X.; Schmitt, V.; Bertet, P.; Vion, D.; Wustmann, W.; Shumeiko, V.; Esteve, D., High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array, Phys. Rev. B, 89, 214517 (2014)
[1142] Roy, T.; Kundu, S.; Chand, M.; Vadiraj, A. M.; Ranadive, A.; Nehra, N.; Patankar, M. P.; Aumentado, J.; Clerk, A. A.; Vijay, R., Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product, Appl. Phys. Lett., 107, 262601 (2015)
[1143] Mück, M.; André, M.-O.; Clarke, J.; Gail, J.; Heiden, C., Radio-frequency amplifier based on a niobium dc superconducting quantum interference device with microstrip input coupling, Appl. Phys. Lett., 72, 2885 (1998)
[1144] Mück, M.; Welzel, C.; Clarke, J., Superconducting quantum interference device amplifiers at gigahertz frequencies, Appl. Phys. Lett., 82, 3266 (2003)
[1145] Spietz, L.; Irwin, K.; Aumentado, J., Input impedance and gain of a gigahertz amplifier using a dc superconducting quantum interference device in a quarter wave resonator, Appl. Phys. Lett., 93, 82506 (2008)
[1146] Spietz, L.; Irwin, K.; Aumentado, J., Superconducting quantum interference device amplifiers with over 27 GHz of gain-bandwidth product operated in the 4-8 GHz frequency range, Appl. Phys. Lett., 95, 92505 (2009)
[1147] Spietz, L.; Irwin, K.; Lee, M.; Aumentado, J., Noise performance of lumped element direct current superconducting quantum interference device amplifiers in the 4-8 GHz range, Appl. Phys. Lett., 97, 142502 (2010)
[1148] Hatridge, M.; Vijay, R.; Slichter, D. H.; Clarke, J.; Siddiqi, I., Dispersive magnetometry with a quantum limited SQUID parametric amplifier, Phys. Rev. B, 83, 134501 (2011)
[1149] Abdo, B.; Kamal, A.; Devoret, M., Nondegenerate three-wave mixing with the Josephson ring modulator, Phys. Rev. B, 87, 14508 (2013)
[1150] Campagne-Ibarcq, P.; Flurin, E.; Roch, N.; Darson, D.; Morfin, P.; Mirrahimi, M.; Devoret, M. H.; Mallet, F.; Huard, B., Persistent control of a superconducting qubit by stroboscopic measurement feedback, Phys. Rev. X, 3, 21008 (2013)
[1151] Ho Eom, B.; Day, P. K.; LeDuc, H. G.; Zmuidzinas, J., A wideband, low-noise superconducting amplifier with high dynamic range, Nat. Phys., 8, 623 (2012)
[1152] Yaakobi, O.; Friedland, L.; Macklin, C.; Siddiqi, I., Parametric amplification in Josephson junction embedded transmission lines, Phys. Rev. B, 87, 144301 (2013)
[1153] O’Brien, K.; Macklin, C.; Siddiqi, I.; Zhang, X., Resonant phase matching of Josephson junction traveling wave parametric amplifiers, Phys. Rev. Lett., 113, 157001 (2014)
[1154] Adamyan, A. A.; de Graaf, S. E.; Kubatkin, S. E.; Danilov, A. V., Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line, J. Appl. Phys., 119, 83901 (2016)
[1155] Hover, D.; Chen, Y.-F.; Ribeill, G. J.; Zhu, S.; Sendelbach, S.; McDermott, R., Superconducting low-inductance undulatory galvanometer microwave amplifier, Appl. Phys. Lett., 100, 63503 (2012)
[1156] Tholen, E. A.; Ergul, A.; Doherty, E. M.; Weber, F. M.; Gregis, F.; Haviland, D. B.; Tholén, E. A.; Ergül, A.; Doherty, E. M.; Weber, F. M.; Grégis, F.; Haviland, D. B., Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators, Appl. Phys. Lett., 90, 253509 (2007)
[1157] Ockeloen-Korppi, C. F.; Damskägg, E.; Pirkkalainen, J.-M.; Heikkilä, T. T.; Massel, F.; Sillanpää, M. A., Low-noise amplification and frequency conversion with a multiport microwave optomechanical device, Phys. Rev. X, 6, 41024 (2016)
[1158] Ockeloen-Korppi, C. F.; Damskägg, E.; Pirkkalainen, J.-M.; Heikkilä, T. T.; Massel, F.; Sillanpää, M. A., Noiseless quantum measurement and squeezing of microwave fields utilizing mechanical vibrations, Phys. Rev. Lett., 118, 103601 (2017)
[1159] Glauber, R. J., Photon correlations, Phys. Rev. Lett., 10, 84 (1963)
[1160] Glauber, R. J., The quantum theory of optical coherence, Phys. Rev., 130, 2529 (1963)
[1161] Mandel, L.; Wolf, E., Coherence properties of optical fields, Rev. Modern Phys., 37, 231 (1965)
[1162] Paul, H., Photon antibunching, Rev. Modern Phys., 54, 1061 (1982)
[1163] Kimble, H. J.; Dagenais, M.; Mandel, L., Photon antibunching in resonance fluorescence, Phys. Rev. Lett., 39, 691 (1977)
[1164] Diedrich, F.; Walther, H., Nonclassical radiation of a single stored ion, Phys. Rev. Lett., 58, 203 (1987)
[1165] Basché, T.; Moerner, W. E.; Orrit, M.; Talon, H., Photon antibunching in the fluorescence of a single dye molecule trapped in a solid, Phys. Rev. Lett., 69, 1516 (1992)
[1166] Kuhn, A.; Hennrich, M.; Rempe, G., Deterministic single-photon source for distributed quantum networking, Phys. Rev. Lett., 89, 67901 (2002)
[1167] Zakka-Bajjani, E.; Dufouleur, J.; Coulombel, N.; Roche, P.; Glattli, D. C.; Portier, F., Experimental determination of the statistics of photons emitted by a tunnel junction, Phys. Rev. Lett., 104, 206802 (2010)
[1168] Grosse, N. B.; Symul, T.; Stobińska, M.; Ralph, T. C.; Lam, P. K., Measuring photon antibunching from continuous variable sideband squeezing, Phys. Rev. Lett., 98, 153603 (2007)
[1169] Virally, S.; Simoneau, J. O.; Lupien, C.; Reulet, B., Discrete photon statistics from continuous microwave measurements, Phys. Rev. A, 93, 43813 (2016)
[1170] Goetz, J.; Pogorzalek, S.; Deppe, F.; Fedorov, K. G.; Eder, P.; Fischer, M.; Wulschner, F.; Xie, E.; Marx, A.; Gross, R., Photon statistics of propagating thermal microwaves, Phys. Rev. Lett., 118, 103602 (2017)
[1171] Bužek, V.; Adam, G.; Drobný, G., Quantum state reconstruction and detection of quantum coherences on different observation levels, Phys. Rev. A, 54, 804 (1996)
[1172] Feynman, R. P., Simulating physics with computers, Internat. J. Theoret. Phys., 21, 467 (1982)
[1173] Buluta, I.; Nori, F., Quantum simulators, Science, 326, 108 (2009)
[1174] Georgescu, I. M.; Ashhab, S.; Nori, F., Quantum simulation, Rev. Modern Phys., 86, 153 (2014)
[1175] Leek, P. J.; Fink, J. M.; Blais, A.; Bianchetti, R.; Göppl, M.; Gambetta, J. M.; Schuster, D. I.; Frunzio, L.; Schoelkopf, R. J.; Wallraff, A., Observation of Berry’s phase in a solid-state qubit, Science, 318, 1889 (2007) · Zbl 1226.81077
[1176] Berger, S.; Pechal, M.; Pugnetti, S.; Abdumalikov, A. A.; Steffen, L.; Fedorov, A.; Wallraff, A.; Filipp, S., Geometric phases in superconducting qubits beyond the two-level approximation, Phys. Rev. B, 85, 220502 (2012)
[1177] Berger, S.; Pechal, M.; Abdumalikov, A. A.; Eichler, C.; Steffen, L.; Fedorov, A.; Wallraff, A.; Filipp, S., Exploring the effect of noise on the Berry phase, Phys. Rev. A, 87, 060303 (2013)
[1178] Muthukrishnan, A.; Stroud, C. R., Multivalued logic gates for quantum computation, Phys. Rev. A, 62, 52309 (2000)
[1179] Bullock, S.; O’Leary, D.; Brennen, G., Asymptotically optimal quantum circuits for \(d\)-level systems, Phys. Rev. Lett., 94, 230502 (2005)
[1180] Lanyon, B. P.; Barbieri, M.; Almeida, M. P.; Jennewein, T.; Ralph, T. C.; Resch, K. J.; Pryde, G. J.; O’Brien, J. L.; Gilchrist, A.; White, A. G., Simplifying quantum logic using higher-dimensional Hilbert spaces, Nat. Phys., 5, 134 (2008)
[1181] Neeley, M.; Ansmann, M.; Bialczak, R. C.; Hofheinz, M.; Lucero, E.; O’Connell, A. D.; Sank, D.; Wang, H.; Wenner, J.; Cleland, A. N.; Geller, M. R.; Martinis, J. M., Emulation of a quantum spin with a superconducting phase qudit, Science, 325, 722 (2009)
[1182] Nori, F., Quantum football, Science, 325, 689 (2009)
[1183] Abdumalikov, A. A.; Fink, J. M.; Juliusson, K.; Pechal, M.; Berger, S.; Wallraff, A.; Filipp, S., Experimental realization of non-abelian non-adiabatic geometric gates, Nature, 496, 482 (2013)
[1184] Hasan, M. Z.; Kane, C. L., Colloquium: Topological insulators, Rev. Modern Phys., 82, 3045 (2010)
[1185] Qi, X.-L.; Zhang, S.-C., Topological insulators and superconductors, Rev. Modern Phys., 83, 1057 (2011)
[1186] Chiu, C.-K.; Teo, J. C.Y.; Schnyder, A. P.; Ryu, S., Classification of topological quantum matter with symmetries, Rev. Modern Phys., 88, 035005 (2016)
[1187] Schroer, M. D.; Kolodrubetz, M. H.; Kindel, W. F.; Sandberg, M.; Gao, J.; Vissers, M. R.; Pappas, D. P.; Polkovnikov, A.; Lehnert, K. W., Measuring a topological transition in an artificial spin- 1/2 system, Phys. Rev. Lett., 113, 050402 (2014)
[1188] Roushan, P.; Neill, C.; Chen, Y.; Kolodrubetz, M.; Quintana, C.; Leung, N.; Fang, M.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Mutus, J.; O’Malley, P. J.J.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Polkovnikov, A.; Cleland, A. N.; Martinis, J. M., Observation of topological transitions in interacting quantum circuits, Nature, 515, 241 (2014)
[1189] Zhong, Y. P.; Xu, D.; Wang, P.; Song, C.; Guo, Q. J.; Liu, W. X.; Xu, K.; Xia, B. X.; Lu, C.-Y.; Han, S.; Pan, J.-W.; Wang, H., Emulating anyonic fractional statistical behavior in a superconducting quantum circuit, Phys. Rev. Lett., 117, 110501 (2016)
[1190] You, J. Q.; Shi, X. F.; Hu, X.; Nori, F., Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits, Phys. Rev. B, 81, 014505 (2010)
[1191] You, J. Q.; Wang, Z. D.; Zhang, W.; Nori, F., Encoding a qubit with majorana modes in superconducting circuits, Sci. Rep., 4, 5535 (2014)
[1192] Chen, Y.; Roushan, P.; Sank, D.; Neill, C.; Lucero, E.; Mariantoni, M.; Barends, R.; Chiaro, B.; Kelly, J.; Megrant, A.; Mutus, J. Y.; O’Malley, P. J.J.; Vainsencher, A.; Wenner, J.; White, T. C.; Yin, Y.; Cleland, A. N.; Martinis, J. M., Emulating weak localization using a solid-state quantum circuit, Nature Commun., 5, 5184 (2014)
[1193] Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O’Malley, P. J.J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, J. M., Digital quantum simulation of fermionic models with a superconducting circuit, Nature Commun., 6, 7654 (2015)
[1194] O’Malley, P. J.J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Coveney, P. V.; Love, P. J.; Neven, H.; Aspuru-Guzik, A.; Martinis, J. M., Scalable quantum simulation of molecular energies, Phys. Rev. X, 6, 031007 (2016)
[1195] Zhang, Y.; Yu, L.; Liang, J.-Q.; Chen, G.; Jia, S.; Nori, F., Quantum phases in circuit QED with a superconducting qubit array, Sci. Rep., 4, 4083 (2014)
[1196] Carusotto, I.; Ciuti, C., Quantum fluids of light, Rev. Modern Phys., 85, 299 (2013)
[1197] Tsomokos, D. I.; Ashhab, S.; Nori, F., Using superconducting qubit circuits to engineer exotic lattice systems, Phys. Rev. A, 82, 052311 (2010)
[1198] Zhu, G.; Schmidt, S.; Koch, J., Dispersive regime of the Jaynes-Cummings and Rabi lattice, New J. Phys., 15, 115002 (2013)
[1199] Koch, J.; Le Hur, K., Superfluid-Mott-insulator transition of light in the Jaynes-Cummings lattice, Phys. Rev. A, 80, 023811 (2009)
[1200] Raftery, J.; Sadri, D.; Schmidt, S.; Türeci, H. E.; Houck, A. A., Observation of a dissipation-induced classical to quantum transition, Phys. Rev. X, 4, 031043 (2014)
[1201] Underwood, D. L.; Shanks, W. E.; Koch, J.; Houck, A. A., Low-disorder microwave cavity lattices for quantum simulation with photons, Phys. Rev. A, 86, 023837 (2012)
[1202] Underwood, D. L.; Shanks, W. E.; Li, A. C.Y.; Ateshian, L.; Koch, J.; Houck, A. A., Imaging photon lattice states by scanning defect microscopy, Phys. Rev. X, 6, 021044 (2016)
[1203] DiVincenzo, D. P., The physical implementation of quantum computation, Fortschr. Phys., 48, 771 (2000) · Zbl 1071.81510
[1204] Wendin, G., Quantum information processing with superconducting circuits: a review, Rep. Progr. Phys., 80, 106001 (2017)
[1205] Ristè, D.; van Leeuwen, J. G.; Ku, H.-S.; Lehnert, K. W.; DiCarlo, L., Initialization by measurement of a superconducting quantum bit circuit, Phys. Rev. Lett., 109, 50507 (2012)
[1206] Johnson, J. E.; Macklin, C.; Slichter, D. H.; Vijay, R.; Weingarten, E. B.; Clarke, J.; Siddiqi, I., Heralded state preparation in a superconducting qubit, Phys. Rev. Lett., 109, 050506 (2012)
[1207] Govia, L. C.G.; Wilhelm, F. K., Unitary-feedback-improved qubit initialization in the dispersive regime, Phys. Rev. Appl., 4, 054001 (2015)
[1208] Geerlings, K.; Leghtas, Z.; Pop, I. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H., Demonstrating a driven reset protocol for a superconducting qubit, Phys. Rev. Lett., 110, 120501 (2013)
[1209] Reed, M. D.; Johnson, B. R.; Houck, A. A.; DiCarlo, L.; Chow, J. M.; Schuster, D. I.; Frunzio, L.; Schoelkopf, R. J., Fast reset and suppressing spontaneous emission of a superconducting qubit, Appl. Phys. Lett., 96, 203110 (2010)
[1210] Tuorila, J.; Partanen, M.; Ala-Nissila, T.; Möttönen, M., Efficient protocol for qubit initialization with a tunable environment, npj Quantum Inf., 3, 27 (2017)
[1211] Bultink, C. C.; Rol, M. A.; O’Brien, T. E.; Fu, X.; Dikken, B. C.S.; Dickel, C.; Vermeulen, R. F.L.; de Sterke, J. C.; Bruno, A.; Schouten, R. N.; DiCarlo, L., Active resonator reset in the nonlinear dispersive regime of circuit QED, Phys. Rev. Appl., 6, 034008 (2016)
[1212] McClure, D. T.; Paik, H.; Bishop, L. S.; Steffen, M.; Chow, J. M.; Gambetta, J. M., Rapid driven reset of a qubit readout resonator, Phys. Rev. Appl., 5, 011001 (2016)
[1213] Boutin, S.; Andersen, C. K.; Venkatraman, J.; Ferris, A. J.; Blais, A., Resonator reset in circuit QED by optimal control for large open quantum systems, Phys. Rev. A, 96, 042315 (2017)
[1214] Ristè, D.; Bultink, C. C.; Tiggelman, M. J.; Schouten, R. N.; Lehnert, K. W.; DiCarlo, L., Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit, Nature Commun., 4, 1913 (2013)
[1215] Berkley, A. J.; Xu, H.; Ramos, R. C.; Gubrud, M. A.; Strauch, F. W.; Johnson, P. R.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Wellstood, F. C., Entangled macroscopic quantum states in two superconducting qubits, Science, 300, 1548 (2003)
[1216] McDermott, R.; Simmonds, R. W.; Steffen, M.; Cooper, K. B.; Cicak, K.; Osborn, K. D.; Oh, S.; Pappas, D. P.; Martinis, J. M., Simultaneous state measurement of coupled Josephson phase qubits, Science, 307, 1299 (2005)
[1217] Cleland, A. N.; Geller, M. R., Superconducting qubit storage and entanglement with nanomechanical resonators, Phys. Rev. Lett., 93, 070501 (2004)
[1218] Eichler, C.; Lang, C.; Fink, J. M.; Govenius, J.; Filipp, S.; Wallraff, A., Observation of entanglement between itinerant microwave photons and a superconducting qubit, Phys. Rev. Lett., 109, 240501 (2012)
[1219] Fedorov, A.; Steffen, L.; Baur, M.; de Silva, M. P.; Wallraff, A., Implementation of a Toffoli gate with superconducting circuits, Nature, 481, 170 (2011)
[1220] Reed, M. D.; DiCarlo, L.; Nigg, S. E.; Sun, L.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J., Realization of three-qubit quantum error correction with superconducting circuits, Nature, 482, 382 (2012)
[1221] Córcoles, A.; Magesan, E.; Srinivasan, S. J.; Cross, A. W.; Steffen, M.; Gambetta, J. M.; Chow, J. M., Demonstration of a quantum error detection code using a square lattice of four superconducting qubits, Nature Commun., 6, 6979 (2015)
[1222] Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. L.; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J.J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, J. M., Digitized adiabatic quantum computing with a superconducting circuit, Nature, 534, 222 (2016)
[1223] You, J. Q.; Tsai, J. S.; Nori, F., Scalable quantum computing with Josephson charge qubits, Phys. Rev. Lett., 89, 197902 (2002)
[1224] Rigetti, C.; Blais, A.; Devoret, M., Protocol for universal gates in optimally biased superconducting qubits, Phys. Rev. Lett., 94, 240502 (2005)
[1225] Liu, Y.-X.; Wei, L.; Tsai, J. S.; Nori, F., Controllable coupling between flux qubits, Phys. Rev. Lett., 96, 067003 (2006)
[1226] Grajcar, M.; Liu, Y.-X.; Nori, F.; Zagoskin, A. M., Switchable resonant coupling of flux qubits, Phys. Rev. B, 74, 172505 (2006)
[1227] Hime, T.; Reichardt, P. A.; Plourde, B. L.T.; Robertson, T. L.; Wu, C.-E.; Ustinov, A. V.; Clarke, J., Solid-State qubits with current-controlled coupling, Science, 314, 1427 (2006)
[1228] Niskanen, A. O.; Harrabi, K.; Yoshihara, F.; Nakamura, Y.; Lloyd, S.; Tsai, J. S., Quantum coherent tunable coupling of superconducting qubits, Science, 316, 723 (2007)
[1229] Van Der Ploeg, S. H.W.; Izmalkov, A.; Van Den Brink, A. M.; Hübner, U.; Grajcar, M.; Il’ichev, E.; Meyer, H. G.; Zagoskin, A. M., Controllable coupling of superconducting flux qubits, Phys. Rev. Lett., 98, 057004 (2007)
[1230] Harris, R.; Berkley, A.; Johnson, M.; Bunyk, P.; Govorkov, S.; Thom, M.; Uchaikin, S.; Wilson, A.; Chung, J.; Holtham, E.; Biamonte, J.; Smirnov, A.; Amin, M.; Maassen van den Brink, A., Sign- and magnitude-tunable coupler for superconducting flux qubits, Phys. Rev. Lett., 98, 177001 (2007)
[1231] Yamamoto, T.; Watanabe, M.; You, J. Q.; Pashkin, Y. A.; Astafiev, O.; Nakamura, Y.; Nori, F.; Tsai, J. S., Spectroscopy of superconducting charge qubits coupled by a Josephson inductance, Phys. Rev. B, 77, 064505 (2008)
[1232] Bialczak, R. C.; Ansmann, M.; Hofheinz, M.; Lenander, M.; Lucero, E.; Neeley, M.; O’Connell, A. D.; Sank, D.; Wang, H.; Weides, M.; Wenner, J.; Yamamoto, T.; Cleland, A. N.; Martinis, J. M., Fast tunable coupler for superconducting qubits, Phys. Rev. Lett., 106, 060501 (2011)
[1233] Allman, M. S.; Whittaker, J. D.; Castellanos-Beltran, M.; Cicak, K.; de Silva, F.; DeFeo, M. P.; Lecocq, F.; Sirois, A.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W., Tunable resonant and nonresonant interactions between a phase qubit and \(L C\) resonator, Phys. Rev. Lett., 112, 123601 (2014)
[1234] Y. Wu, L.-P. Yang, Y. Zheng, H. Deng, Z. Yan, Y. Zhao, K. Huang, W.J. Munro, K. Nemoto, D.-N. Zheng, C.P. Sun, Y.-X. Liu, X. Zhu, L. Lu, An efficient and compact quantum switch for quantum circuits, 2016. arXiv:1605.06747; Y. Wu, L.-P. Yang, Y. Zheng, H. Deng, Z. Yan, Y. Zhao, K. Huang, W.J. Munro, K. Nemoto, D.-N. Zheng, C.P. Sun, Y.-X. Liu, X. Zhu, L. Lu, An efficient and compact quantum switch for quantum circuits, 2016. arXiv:1605.06747
[1235] Wei, L. F.; Liu, Y.-X.; Nori, F., Quantum computation with Josephson qubits using a current-biased information bus, Phys. Rev. B, 71, 134506 (2005)
[1236] Ashhab, S.; Matsuo, S.; Hatakenaka, N.; Nori, F., Generalized switchable coupling for superconducting qubits using double resonance, Phys. Rev. B, 74, 184504 (2006)
[1237] Ashhab, S.; Nori, F., Switchable coupling for superconducting qubits using double resonance in the presence of crosstalk, Phys. Rev. B, 76, 132513 (2007)
[1238] Ashhab, S.; Niskanen, A. O.; Harrabi, K.; Nakamura, Y.; Picot, T.; de Groot, P. C.; Harmans, C. J.P. M.; Mooij, J. E.; Nori, F., Interqubit coupling mediated by a high-excitation-energy quantum object, Phys. Rev. B, 77, 014510 (2008)
[1239] Ashhab, S.; de Groot, P. C.; Nori, F., Speed limits for quantum gates in multiqubit systems, Phys. Rev. A, 85, 052327 (2012)
[1240] Yamamoto, T.; Pashkin, Y. A.; Astafiev, O.; Nakamura, Y.; Tsai, J. S., Demonstration of conditional gate operation using superconducting charge qubits, Nature, 425, 941 (2003)
[1241] Plantenberg, J. H.; de Groot, P. C.; Harmans, C. J.P. M.; Mooij, J. E., Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits, Nature, 447, 836 (2007)
[1242] DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, L. S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J., Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature, 460, 240 (2009)
[1243] Barenco, A.; Bennett, C. H.; Cleve, R.; DiVincenzo, D. P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J. A.; Weinfurter, H., Elementary gates for quantum computation, Phys. Rev. A, 52, 3457 (1995)
[1244] Ansmann, M.; Wang, H.; Bialczak, R. C.; Hofheinz, M.; Lucero, E.; Neeley, M.; O’Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Cleland, A. N.; Martinis, J. M., Violation of Bell’s inequality in Josephson phase qubits, Nature, 461, 504 (2009)
[1245] Wei, L. F.; Liu, Y.-X.; Nori, F., Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations, Phys. Rev. B, 72, 104516 (2005)
[1246] Wei, L. F.; Liu, Y.-X.; Storcz, M. J.; Nori, F., Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits, Phys. Rev. A, 73, 52307 (2006)
[1247] Neeley, M.; Bialczak, R. C.; Lenander, M.; Lucero, E.; Mariantoni, M.; O’Connell, A. D.; Sank, D.; Wang, H.; Weides, M.; Wenner, J.; Yin, Y.; Yamamoto, T.; Cleland, A. N.; Martinis, J. M., Generation of three-qubit entangled states using superconducting phase qubits, Nature, 467, 570 (2010)
[1248] DiCarlo, L.; Reed, M. D.; Sun, L.; Johnson, B. R.; Chow, J. M.; Gambetta, J. M.; Frunzio, L.; Girvin, S. M.; Devoret, M. H.; Schoelkopf, R. J., Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature, 467, 574 (2010)
[1249] Altomare, F.; Park, J. I.; Cicak, K.; Sillanpää, M. A.; Allman, M. S.; Li, D.; Sirois, A.; Strong, J. A.; Whittaker, J. D.; Simmonds, R. W., Tripartite interactions between two phase qubits and a resonant cavity, Nat. Phys., 6, 777 (2010)
[1250] Wei, L. F.; Liu, Y.-X.; Nori, F., Generation and Control of Greenberger-Horne-Zeilinger Entanglement in Superconducting Circuits, Phys. Rev. Lett., 96, 246803 (2006)
[1251] Matsuo, S.; Ashhab, S.; Fujii, T.; Nori, F.; Nagai, K.; Hatakenaka, N., Generation of macroscopic entangled states in coupled superconducting phase qubits, J. Phys. Soc. Japan, 76, 054802 (2007)
[1252] Kim, M. D.; Cho, S. Y., Macroscopic Greenberger-Horne-Zeilinger and \(W\) states in flux qubits, Phys. Rev. B, 77, 100508 (2008)
[1253] Galiautdinov, A.; Martinis, J. M., Maximally entangling tripartite protocols for Josephson phase qubits, Phys. Rev. A, 78, 010305 (2008)
[1254] Bishop, L. S.; Tornberg, L.; Price, D.; Ginossar, E.; Nunnenkamp, A.; Houck, A. A.; Gambetta, J. M.; Koch, J.; Johansson, G.; Girvin, S. M.; Schoelkopf, R. J., Proposal for generating and detecting multi-qubit GHZ states in circuit QED, New J. Phys., 11, 073040 (2009)
[1255] Helmer, F.; Marquardt, F., Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED, Phys. Rev. A, 79, 052328 (2009)
[1256] Wang, Y.-D.; Chesi, S.; Loss, D.; Bruder, C., One-step multiqubit Greenberger-Horne-Zeilinger state generation in a circuit QED system, Phys. Rev. B, 81, 104524 (2010)
[1257] Yang, C.-P.; Su, Q.-P.; Zheng, S.-B.; Han, S., Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A, 87, 022320 (2013)
[1258] Yang, C.-P.; Su, Q.-P.; Zheng, S.-B.; Nori, F., Entangling superconducting qubits in a multi-cavity system, New J. Phys., 18, 013025 (2016)
[1259] Liu, X.; Liao, Q.; Xu, X.; Fang, G.; Liu, S., One-step schemes for multiqubit GHZ states and W-class states in circuit QED, Opt. Commun., 359, 359 (2016)
[1260] Lucero, E.; Barends, R.; Chen, Y.; Kelly, J.; Mariantoni, M.; Megrant, A.; O’Malley, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Yin, Y.; Cleland, A. N.; Martinis, J. M., Computing prime factors with a Josephson phase qubit quantum processor, Nat. Phys., 8, 719 (2012)
[1261] C. Song, K. Xu, W. Liu, C. Yang, S.-B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y.A. Chen, C.Y. Lu, S. Han, J.W. Pan, 10-Qubit entanglement and parallel logic operations with a superconducting circuit, 2017. arXiv:1703.10302; C. Song, K. Xu, W. Liu, C. Yang, S.-B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y.A. Chen, C.Y. Lu, S. Han, J.W. Pan, 10-Qubit entanglement and parallel logic operations with a superconducting circuit, 2017. arXiv:1703.10302
[1262] Zheng, Y.; Song, C.; Chen, M.-C.; Xia, B.; Liu, W.; Guo, Q.; Zhang, L.; Xu, D.; Deng, H.; Huang, K.; Wu, Y.; Yan, Z.; Zheng, D.; Lu, L.; Pan, J.-W.; Wang, H.; Lu, C.-Y.; Zhu, X., Solving systems of linear equations with a superconducting quantum processor, Phys. Rev. Lett., 118, 210504 (2017)
[1263] Barends, R.; Kelly, J.; Megrant, A.; Veitia, A.; Sank, D.; Jeffrey, E.; White, T. C.; Mutus, J.; Fowler, A. G.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Neill, C.; O’Malley, P.; Roushan, P.; Vainsencher, A.; Wenner, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, J. M., Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature, 508, 500 (2014)
[1264] Sheldon, S.; Bishop, L. S.; Magesan, E.; Filipp, S.; Chow, J. M.; Gambetta, J. M., Characterizing errors on qubit operations via iterative randomized benchmarking, Phys. Rev. A, 93, 012301 (2016)
[1265] Sheldon, S.; Magesan, E.; Chow, J. M.; Gambetta, J. M., Procedure for systematically tuning up cross-talk in the cross-resonance gate, Phys. Rev. A, 93, 060302 (2016)
[1266] Rigetti, C.; Devoret, M., Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies, Phys. Rev. B, 81, 134507 (2010)
[1267] Chow, J. M.; Córcoles, A. D.; Gambetta, J. M.; Rigetti, C.; Johnson, B. R.; Smolin, J. A.; Rozen, J. R.; Keefe, G. A.; Rothwell, M. B.; Ketchen, M. B.; Steffen, M., Simple all-microwave entangling gate for fixed-frequency superconducting qubits, Phys. Rev. Lett., 107, 080502 (2011)
[1268] Cross, A. W.; Gambetta, J. M., Optimized pulse shapes for a resonator-induced phase gate, Phys. Rev. A, 91, 032325 (2015)
[1269] Puri, S.; Blais, A., High-fidelity resonator-induced phase gate with single-mode squeezing, Phys. Rev. Lett., 116, 180501 (2016)
[1270] Paik, H.; Mezzacapo, A.; Sandberg, M.; McClure, D. T.; Abdo, B.; Córcoles, A. D.; Dial, O.; Bogorin, D. F.; Plourde, B. L.T.; Steffen, M.; Cross, A. W.; Gambetta, J. M.; Chow, J. M., Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-QED system, Phys. Rev. Lett., 117, 250502 (2016)
[1271] Chow, J. M.; Gambetta, J. M.; Cross, A. W.; Merkel, S. T.; Rigetti, C.; Steffen, M., Microwave-activated conditional-phase gate for superconducting qubits, New J. Phys., 15, 115012 (2013)
[1272] McKay, D. C.; Filipp, S.; Mezzacapo, A.; Magesan, E.; Chow, J. M.; Gambetta, J. M., Universal gate for fixed-frequency qubits via a tunable bus, Phys. Rev. Appl., 6, 064007 (2016)
[1273] Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D., A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, 472 (2001) · Zbl 1226.81046
[1274] Aharonov, D.; van Dam, W.; Kempe, J.; Landau, Z.; Lloyd, S.; Regev, O., Adiabatic quantum computation is equivalent to standard quantum computation, (45th Annu. IEEE Symp. Found. Comput. Sci. (2004), IEEE), 42
[1275] Ashhab, S.; Johansson, J. R.; Nori, F., Decoherence in a scalable adiabatic quantum computer, Phys. Rev. A, 74, 052330 (2006)
[1276] T. Albash, D.A. Lidar, Adiabatic quantum computing, 2016. arXiv:1611.04471; T. Albash, D.A. Lidar, Adiabatic quantum computing, 2016. arXiv:1611.04471 · Zbl 1333.81104
[1277] van der Ploeg, S. H.W.; Izmalkov, A.; Grajcar, M.; Hubner, U.; Linzen, S.; Uchaikin, S.; Wagner, T.; Smirnov, A. Y.; van den Brink, A. M.; Amin, M. H.S.; Zagoskin, A. M.; Il’ichev, E.; Meyer, H.-G., Adiabatic quantum computation with flux qubits, first experimental results, IEEE Trans. Appl. Supercond., 17, 113 (2007)
[1278] Wilson, R. D.; Zagoskin, A. M.; Savel’ev, S.; Everitt, M. J.; Nori, F., Feedback-controlled adiabatic quantum computation, Phys. Rev. A, 86, 052306 (2012)
[1279] Das, A.; Chakrabarti, B. K., Colloquium: Quantum annealing and analog quantum computation, Rev. Modern Phys., 80, 1061 (2008) · Zbl 1205.81058
[1280] Johnson, M. W.; Amin, M. H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A. J.; Johansson, J.; Bunyk, P.; Chapple, E. M.; Enderud, C.; Hilton, J. P.; Karimi, K.; Ladizinsky, E.; Ladizinsky, N.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Truncik, C. J.S.; Uchaikin, S.; Wang, J.; Wilson, B.; Rose, G., Quantum annealing with manufactured spins, Nature, 473, 194 (2011)
[1281] Dickson, N. G.; Johnson, M. W.; Amin, M. H.; Harris, R.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Cai, J.; Chapple, E. M.; Chavez, P.; Cioata, F.; Cirip, T.; DeBuen, P.; Drew-Brook, M.; Enderud, C.; Gildert, S.; Hamze, F.; Hilton, J. P.; Hoskinson, E.; Karimi, K.; Ladizinsky, E.; Ladizinsky, N.; Lanting, T.; Mahon, T.; Neufeld, R.; Oh, T.; Perminov, I.; Petroff, C.; Przybysz, A.; Rich, C.; Spear, P.; Tcaciuc, A.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wang, J.; Wilson, A. B.; Merali, Z.; Rose, G., Thermally assisted quantum annealing of a 16-qubit problem, Nature Commun., 4, 1903 (2013)
[1282] Lanting, T.; Przybysz, A. J.; Smirnov, A. Y.; Spedalieri, F. M.; Amin, M. H.; Berkley, A. J.; Harris, R.; Altomare, F.; Boixo, S.; Bunyk, P.; Dickson, N.; Enderud, C.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Ladizinsky, N.; Neufeld, R.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.; Rose, G., Entanglement in a quantum annealing processor, Phys. Rev. X, 4, 021041 (2014)
[1283] Boixo, S.; Rønnow, T. F.; Isakov, S. V.; Wang, Z.; Wecker, D.; Lidar, D. A.; Martinis, J. M.; Troyer, M., Evidence for quantum annealing with more than one hundred qubits, Nat. Phys., 10, 218 (2014)
[1284] Boixo, S.; Albash, T.; Spedalieri, F. M.; Chancellor, N.; Lidar, D. A., Experimental signature of programmable quantum annealing, Nature Commun., 4, 2067 (2013)
[1285] Pudenz, K. L.; Albash, T.; Lidar, D. A., Error-corrected quantum annealing with hundreds of qubits, Nature Commun., 5, 3243 (2014)
[1286] Rønnow, T. F.; Wang, Z.; Job, J.; Boixo, S.; Isakov, S. V.; Wecker, D.; Martinis, J. M.; Lidar, D. A.; Troyer, M., Defining and detecting quantum speedup, Science, 345, 420 (2014)
[1287] Zagoskin, A. M.; Il’ichev, E.; Grajcar, M.; Betouras, J. J.; Nori, F., How to test the “quantumness” of a quantum computer?, Front. Phys., 2, 30 (2014)
[1288] Heim, B.; Ronnow, T. F.; Isakov, S. V.; Troyer, M., Quantum versus classical annealing of ising spin glasses, Science, 348, 215 (2015) · Zbl 1355.81182
[1289] Amin, M. H., Searching for quantum speedup in quasistatic quantum annealers, Phys. Rev. A, 92, 052323 (2015)
[1290] Isakov, S. V.; Zintchenko, I. N.; Rønnow, T. F.; Troyer, M., Optimised simulated annealing for ising spin glasses, Comput. Phys. Comm., 192, 265 (2015) · Zbl 1380.65473
[1291] Boixo, S.; Smelyanskiy, V. N.; Shabani, A.; Isakov, S. V.; Dykman, M.; Denchev, V. S.; Amin, M. H.; Smirnov, A. Y.; Mohseni, M.; Neven, H., Computational multiqubit tunnelling in programmable quantum annealers, Nature Commun., 7, 10327 (2016)
[1292] Denchev, V. S.; Boixo, S.; Isakov, S. V.; Ding, N.; Babbush, R.; Smelyanskiy, V.; Martinis, J.; Neven, H., What is the computational value of finite-range tunneling?, Phys. Rev. X, 6, 031015 (2016)
[1293] Devitt, S. J.; Munro, W. J.; Nemoto, K., Quantum error correction for beginners, Rep. Progr. Phys., 76, 076001 (2013)
[1294] Terhal, B. M., Quantum error correction for quantum memories, Rev. Modern Phys., 87, 307 (2015)
[1295] Shor, P. W., Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, R2493 (1995)
[1296] Cory, D. G.; Price, M. D.; Maas, W.; Knill, E.; Laflamme, R.; Zurek, W. H.; Havel, T. F.; Somaroo, S. S., Experimental quantum error correction, Phys. Rev. Lett., 81, 2152 (1998)
[1297] Zhong, Y. P.; Wang, Z. L.; Martinis, J. M.; Cleland, A. N.; Korotkov, A. N.; Wang, H., Reducing the impact of intrinsic dissipation in a superconducting circuit by quantum error detection, Nature Commun., 5, 3135 (2014)
[1298] Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O’Malley, P. J.J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, J. M., State preservation by repetitive error detection in a superconducting quantum circuit, Nature, 519, 66 (2015)
[1299] Kerckhoff, J.; Bouten, L.; Silberfarb, A.; Mabuchi, H., Physical model of continuous two-qubit parity measurement in a cavity-QED network, Phys. Rev. A, 79, 024305 (2009)
[1300] Lalumière, K.; Gambetta, J. M.; Blais, A., Tunable joint measurements in the dispersive regime of cavity QED, Phys. Rev. A, 81, 040301 (2010)
[1301] Tornberg, L.; Johansson, G., High-fidelity feedback-assisted parity measurement in circuit QED, Phys. Rev. A, 82, 12329 (2010)
[1302] Kockum, A. F.; Tornberg, L.; Johansson, G., Undoing measurement-induced dephasing in circuit QED, Phys. Rev. A, 85, 052318 (2012)
[1303] Nigg, S. E.; Girvin, S. M., Stabilizer quantum error correction toolbox for superconducting qubits, Phys. Rev. Lett., 110, 243604 (2013)
[1304] DiVincenzo, D. P.; Solgun, F., Multi-qubit parity measurement in circuit quantum electrodynamics, New J. Phys., 15, 75001 (2013) · Zbl 1451.81025
[1305] Tornberg, L.; Barzanjeh, S.; DiVincenzo, D. P., Stochastic-master-equation analysis of optimized three-qubit nondemolition parity measurements, Phys. Rev. A, 89, 32314 (2014)
[1306] Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Lucero, E.; Neeley, M.; Neill, C.; O’Malley, P. J.J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, J. M., Scalable in situ qubit calibration during repetitive error detection, Phys. Rev. A, 94, 032321 (2016)
[1307] S.B. Bravyi, A.Y. Kitaev, Quantum codes on a lattice with boundary, 1998. arXiv:quant-ph/9811052; S.B. Bravyi, A.Y. Kitaev, Quantum codes on a lattice with boundary, 1998. arXiv:quant-ph/9811052
[1308] Fowler, A. G.; Mariantoni, M.; Martinis, J. M.; Cleland, A. N., Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A, 86, 032324 (2012)
[1309] Shankar, S.; Hatridge, M.; Leghtas, Z.; Sliwa, K. M.; Narla, A.; Vool, U.; Girvin, S. M.; Frunzio, L.; Mirrahimi, M.; Devoret, M. H., Autonomously stabilized entanglement between two superconducting quantum bits, Nature, 504, 419 (2013)
[1310] Chow, J. M.; Gambetta, J. M.; Magesan, E.; Abraham, D. W.; Cross, A. W.; Johnson, B. R.; Masluk, N. A.; Ryan, C. A.; Smolin, J. A.; Srinivasan, S. J.; Steffen, M., Implementing a strand of a scalable fault-tolerant quantum computing fabric, Nature Commun., 5, 4015 (2014)
[1311] Takita, M.; Córcoles, A. D.; Magesan, E.; Abdo, B.; Brink, M.; Cross, A.; Chow, J. M.; Gambetta, J. M., Demonstration of weight-four parity measurements in the surface code architecture, Phys. Rev. Lett., 117, 210505 (2016)
[1312] Ristè, D.; Poletto, S.; Huang, M.-Z.; Bruno, A.; Vesterinen, V.; Saira, O.-P.; DiCarlo, L., Detecting bit-flip errors in a logical qubit using stabilizer measurements, Nature Commun., 6, 6983 (2015)
[1313] Chuang, I. L.; Leung, D. W.; Yamamoto, Y., Bosonic quantum codes for amplitude damping, Phys. Rev. A, 56, 1114 (1997)
[1314] Gottesman, D.; Kitaev, A.; Preskill, J., Encoding a qubit in an oscillator, Phys. Rev. A, 64, 012310 (2001)
[1315] Cochrane, P.; Milburn, G. J.; Munro, W., Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A, 59, 2631 (1999)
[1316] Liu, Y.-X.; Özdemir, S. K.; Miranowicz, A.; Imoto, N., Kraus representation of a damped harmonic oscillator and its application, Phys. Rev. A, 70, 042308 (2004)
[1317] Leghtas, Z.; Kirchmair, G.; Vlastakis, B.; Schoelkopf, R. J.; Devoret, M. H.; Mirrahimi, M., Hardware-efficient autonomous quantum memory protection, Phys. Rev. Lett., 111, 120501 (2013)
[1318] Mirrahimi, M.; Leghtas, Z.; Albert, V. V.; Touzard, S.; Schoelkopf, R. J.; Jiang, L.; Devoret, M. H., Dynamically protected cat-qubits: a new paradigm for universal quantum computation, New J. Phys., 16, 045014 (2014) · Zbl 1451.81177
[1319] Terhal, B. M.; Weigand, D., Encoding a qubit into a cavity mode in circuit QED using phase estimation, Phys. Rev. A, 93, 012315 (2016)
[1320] Albert, V. V.; Shu, C.; Krastanov, S.; Shen, C.; Liu, R.-B.; Yang, Z.-B.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.; Jiang, L., Holonomic quantum control with continuous variable systems, Phys. Rev. Lett., 116, 140502 (2016)
[1321] Bergmann, M.; van Loock, P., Quantum error correction against photon loss using NOON states, Phys. Rev. A, 94, 012311 (2016)
[1322] Li, L.; Zou, C.-L.; Albert, V. V.; Muralidharan, S.; Girvin, S. M.; Jiang, L., Cat codes with optimal decoherence suppression for a lossy bosonic channel, Phys. Rev. Lett., 119, 030502 (2017)
[1323] Michael, M. H.; Silveri, M.; Brierley, R. T.; Albert, V. V.; Salmilehto, J.; Jiang, L.; Girvin, S. M., New class of quantum error-correcting codes for a bosonic mode, Phys. Rev. X, 6, 031006 (2016)
[1324] V.V. Albert, K. Noh, K. Duivenvoorden, R.T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S.M. Girvin, B.M. Terhal, L. Jiang, Performance and structure of bosonic codes, 2017. arXiv:1708.05010; V.V. Albert, K. Noh, K. Duivenvoorden, R.T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S.M. Girvin, B.M. Terhal, L. Jiang, Performance and structure of bosonic codes, 2017. arXiv:1708.05010
[1325] Leghtas, Z.; Touzard, S.; Pop, I. M.; Kou, A.; Vlastakis, B.; Petrenko, A.; Sliwa, K. M.; Narla, A.; Shankar, S.; Hatridge, M. J.; Reagor, M.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H., Confining the state of light to a quantum manifold by engineered two-photon loss, Science, 347, 853 (2015)
[1326] Ofek, N.; Petrenko, A.; Heeres, R.; Reinhold, P.; Leghtas, Z.; Vlastakis, B.; Liu, Y.; Frunzio, L.; Girvin, S. M.; Jiang, L.; Mirrahimi, M.; Devoret, M. H.; Schoelkopf, R. J., Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, 536, 441 (2016)
[1327] Bliokh, K.; Bliokh, Y.; Freilikher, V.; Savel’ev, S.; Nori, F., Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Modern Phys., 80, 1201 (2008)
[1328] Zheludev, N. I.; Kivshar, Y. S., From metamaterials to metadevices, Nature Mater., 11, 917 (2012)
[1329] Lapine, M.; Shadrivov, I. V.; Kivshar, Y. S., Colloquium: Nonlinear metamaterials, Rev. Modern Phys., 86, 1093 (2014)
[1330] Savinov, V.; Fedotov, V. A.; Anlage, S. M.; de Groot, P. A.J.; Zheludev, N. I., Modulating sub-THz radiation with current in superconducting metamaterial, Phys. Rev. Lett., 109, 243904 (2012)
[1331] Jung, P.; Butz, S.; Shitov, S. V.; Ustinov, A. V., Low-loss tunable metamaterials using superconducting circuits with Josephson junctions, Appl. Phys. Lett., 102, 062601 (2013)
[1332] Tsironis, G. P.; Lazarides, N.; Margaris, I., Wide-band tuneability, nonlinear transmission, and dynamic multistability in SQUID metamaterials, Appl. Phys. A, 117, 579 (2014)
[1333] Anlage, S. M., The physics and applications of superconducting metamaterials, J. Opt., 13, 24001 (2011)
[1334] Jung, P.; Ustinov, A. V.; Anlage, S. M., Progress in superconducting metamaterials, Supercond. Sci. Technol., 27, 073001 (2014)
[1335] Zagoskin, A. M.; Felbacq, D.; Rousseau, E., Quantum metamaterials in the microwave and optical ranges, EPJ Quantum Technol., 3, 2 (2016)
[1336] Wilson, R. D.; Everitt, M. J.; Savel’ev, S.; Zagoskin, A. M., The influence of dissipation in a 1D quantum metamaterial, Supercond. Sci. Technol., 26, 084005 (2013)
[1337] Volkov, P. A.; Fistul, M. V., Collective quantum coherent oscillations in a globally coupled array of superconducting qubits, Phys. Rev. B, 89, 054507 (2014)
[1338] Du, C.; Chen, H.; Li, S., Quantum left-handed metamaterial from superconducting quantum-interference devices, Phys. Rev. B, 74, 113105 (2006)
[1339] Mukhin, S. I.; Fistul, M. V., Generation of non-classical photon states in superconducting quantum metamaterials, Supercond. Sci. Technol., 26, 084003 (2013)
[1340] Savinov, V.; Tsiatmas, A.; Buckingham, A. R.; Fedotov, V. A.; de Groot, P. A.J.; Zheludev, N. I., Flux exclusion superconducting quantum metamaterial: Towards quantum-level switching, Sci. Rep., 2, 2 (2012)
[1341] Macha, P.; Oelsner, G.; Reiner, J.-M.; Marthaler, M.; André, S.; Schön, G.; Hübner, U.; Meyer, H.-G.; Il’ichev, E.; Ustinov, A. V., Implementation of a quantum metamaterial using superconducting qubits, Nature Commun., 5, 5146 (2014)
[1342] Kakuyanagi, K.; Matsuzaki, Y.; Déprez, C.; Toida, H.; Semba, K.; Yamaguchi, H.; Munro, W. J.; Saito, S., Observation of collective coupling between an engineered ensemble of macroscopic artificial atoms and a superconducting resonator, Phys. Rev. Lett., 117, 210503 (2016)
[1343] Ian, H.; Liu, Y.-X.; Nori, F., Excitation spectrum for an inhomogeneously dipole-field-coupled superconducting qubit chain, Phys. Rev. A, 85, 053833 (2012)
[1344] Shapiro, D.; Macha, P.; Rubtsov, A.; Ustinov, A., Dispersive response of a disordered superconducting quantum metamaterial, Photonics, 2, 449 (2015)
[1345] Lambert, N.; Matsuzaki, Y.; Kakuyanagi, K.; Ishida, N.; Saito, S.; Nori, F., Superradiance with an ensemble of superconducting flux qubits, Phys. Rev. B, 94, 224510 (2016)
[1346] Johansson, J. R.; Nation, P. D.; Nori, F., QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Comm., 183, 1760 (2012)
[1347] Johansson, J. R.; Nation, P. D.; Nori, F., QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Comm., 184, 1234 (2013)
[1348] Widom, A., Quantum electrodynamic circuits at ultralow temperature, J. Low Temp. Phys., 37, 449 (1979)
[1349] Yurke, B.; Denker, J. S., Quantum network theory, Phys. Rev. A, 29, 1419 (1984)
[1350] M.H. Devoret, Quantum fluctuations in electrical circuits, Les Houches, Sess. LXIII, 1995.; M.H. Devoret, Quantum fluctuations in electrical circuits, Les Houches, Sess. LXIII, 1995.
[1351] Burkard, G.; Koch, R. H.; DiVincenzo, D. P., Multilevel quantum description of decoherence in superconducting qubits, Phys. Rev. B, 69, 064503 (2004)
[1352] Vool, U.; Devoret, M., Introduction to quantum electromagnetic circuits, Int. J. Circuit Theory Appl. (2017)
[1353] Tornberg, L., Superconducting Qubits -Measurement, Entanglement, and Noise (2009), Chalmers University of Technology: Chalmers University of Technology Gothenburg, (Ph.D. thesis)
[1354] Johansson, J. R., Quantum Mechanics in Superconducting Circuits and Nanomechanical Devices (2009), Chalmers University of Technology: Chalmers University of Technology Gothenburg, (Ph.D. thesis)
[1355] Kockum, A. F., Quantum Optics with Artificial Atoms (2014), Chalmers University of Technology: Chalmers University of Technology Gothenburg, (Ph.D. thesis)
[1356] Goldstein, H., Classical Mechanics (1980), Addison-Wesley Publishing Company, Inc. · Zbl 0491.70001
[1357] Waldram, J. R., Superconductivity of Metals and Cuprates (1996), IOP Publishing Ltd
[1358] Bishop, L. S., Circuit Quantum Electrodynamics (2010), Yale University: Yale University New Haven, (Ph.D. thesis)
[1359] Sakurai, J. J., Modern Quantum Mechanics (1994), Addison-Wesley Publishing Company, Inc.
[1360] Peskin, M. E.; Schroeder, D. V., An Introduction to Quantum Field Theory (1995), Westview Press
[1361] Schrieffer, J. R.; Wolff, P. A., Relation between the Anderson and Kondo hamiltonians, Phys. Rev., 149, 491 (1966)
[1362] Carbonaro, P.; Compagno, G.; Persico, F., Canonical dressing of atoms by intense radiation fields, Phys. Lett. A, 73, 97 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.