×

Kinetic functions for nonclassical shocks, entropy stability, and discrete summation by parts. (English) Zbl 1484.65183

Summary: We study nonlinear hyperbolic conservation laws with non-convex flux in one space dimension and, for a broad class of numerical methods based on summation by parts operators, we compute numerically the kinetic functions associated with each scheme. As established by LeFloch and collaborators, kinetic functions (for continuous or discrete models) uniquely characterize the macro-scale dynamics of small-scale dependent, undercompressive, nonclassical shock waves. We show here that various entropy-dissipative numerical schemes can yield nonclassical solutions containing classical shocks, including Fourier methods with (super-) spectral viscosity, finite difference schemes with artificial dissipation, discontinuous Galerkin schemes with or without modal filtering, and TeCNO schemes. We demonstrate numerically that entropy stability does not imply uniqueness of the limiting numerical solutions for scalar conservation laws in one space dimension, and we compute the associated kinetic functions in order to distinguish between these schemes. In addition, we design entropy-dissipative schemes for the Keyfitz-Kranzer system whose solutions are measures with delta shocks. This system illustrates the fact that entropy stability does not imply boundedness under grid refinement.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
35D30 Weak solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Berthon, C.; Coquel, F.; LeFloch, PG, Why many theories of shock waves are necessary: kinetic relations for non-conservative systems, Proc. R. Soc. Edinb. Sect. A, 142, 1, 1-37 (2012) · Zbl 1234.35190 · doi:10.1017/S0308210510001009
[2] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65-98 (2017). doi:10.1137/141000671. arXiv:1411.1607 [cs.MS] · Zbl 1356.68030
[3] Carpenter, MH; Gottlieb, D.; Abarbanel, S., Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes, J. Comput. Phys., 111, 2, 220-236 (1994) · Zbl 0832.65098 · doi:10.1006/jcph.1994.1057
[4] Carpenter, MH; Nordström, J.; Gottlieb, D., A stable and conservative interface treatment of arbitrary spatial accuracy, J. Comput. Phys., 148, 2, 341-365 (1999) · Zbl 0921.65059 · doi:10.1006/jcph.1998.6114
[5] Castro, MJ; LeFloch, PG; Muñoz-Ruiz, ML; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 17, 8107-8129 (2008) · Zbl 1176.76084 · doi:10.1016/j.jcp.2008.05.012
[6] Chen, T.; Shu, CW, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253 · doi:10.1016/j.jcp.2017.05.025
[7] Clawpack Development Team: Clawpack software (2019)
[8] Condat, L., A direct algorithm for 1-D total variation denoising, IEEE Signal Process. Lett., 20, 11, 1054-1057 (2013) · doi:10.1109/LSP.2013.2278339
[9] Dafermos, CM, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differ. Equ., 14, 2, 202-212 (1973) · Zbl 0262.35038 · doi:10.1016/0022-0396(73)90043-0
[10] De Lellis, C.; Otto, F.; Westdickenberg, M., Minimal entropy conditions for Burgers equation, Q. Appl. Math., 62, 4, 687-700 (2004) · Zbl 1211.35184 · doi:10.1090/qam/2104269
[11] Fernández, DCDR; Boom, PD; Zingg, DW, A generalized framework for nodal first derivative summation-by-parts operators, J. Comput. Phys., 266, 214-239 (2014) · Zbl 1311.65002 · doi:10.1016/j.jcp.2014.01.038
[12] Fernández, DCDR; Hicken, JE; Zingg, DW, Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95, 171-196 (2014) · Zbl 1390.65064 · doi:10.1016/j.compfluid.2014.02.016
[13] Fisher, TC; Carpenter, MH, High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293 · doi:10.1016/j.jcp.2013.06.014
[14] Fjordholm, U.S.: High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. Ph.D. Thesis, ETH Zürich (2013). doi:10.3929/ethz-a-007622508
[15] Fjordholm, US; Käppeli, R.; Mishra, S.; Tadmor, E., Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Found. Comput. Math., 17, 763-827 (2017) · Zbl 1371.65080 · doi:10.1007/s10208-015-9299-z
[16] Fjordholm, US; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 2, 544-573 (2012) · Zbl 1252.65150 · doi:10.1137/110836961
[17] Fjordholm, US; Mishra, S.; Tadmor, E., ENO reconstruction and ENO interpolation are stable, Found. Comput. Math., 13, 2, 139-159 (2013) · Zbl 1273.65120 · doi:10.1007/s10208-012-9117-9
[18] Fjordholm, US; Mishra, S.; Tadmor, E., On the computation of measure-valued solutions, Acta Numerica, 25, 567-679 (2016) · Zbl 1382.76001 · doi:10.1017/S0962492916000088
[19] Gassner, GJ, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065 · doi:10.1137/120890144
[20] Gassner, G.J., Svärd, M., Hindenlang, F.J.: Stability issues of entropy-stable and/or split-form high-order schemes (2020). arXiv:2007.09026 [math.NA]
[21] Guo, BY; Ma, HP; Tadmor, E., Spectral vanishing viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., 39, 4, 1254-1268 (2001) · Zbl 1020.65071 · doi:10.1137/S0036142999362687
[22] Hayes, BT; LeFloch, PG, Non-classical shocks and kinetic relations: scalar conservation laws, Arch. Ration. Mech. Anal., 139, 1, 1-56 (1997) · Zbl 0902.76053 · doi:10.1007/s002050050046
[23] Hayes, BT; LeFloch, PG, Nonclassical shocks and kinetic relations: finite difference schemes, SIAM J. Numer. Anal., 35, 6, 2169-2194 (1998) · Zbl 0938.35096 · doi:10.1137/S0036142997315998
[24] Hesthaven, J.; Kirby, R., Filtering in Legendre spectral methods, Math. Comput., 77, 263, 1425-1452 (2008) · Zbl 1195.65138 · doi:10.1090/S0025-5718-08-02110-8
[25] Hicken, JE, Entropy-stable, high-order summation-by-parts discretizations without interface penalties, J. Sci. Comput., 82, 2, 50 (2020) · Zbl 1434.65184 · doi:10.1007/s10915-020-01154-8
[26] Hicken, JE; Fernández, DCDR; Zingg, DW, Multidimensional summation-by-parts operators: general theory and application to simplex elements, SIAM J. Sci. Comput., 38, 4, A1935-A1958 (2016) · Zbl 1382.65355 · doi:10.1137/15M1038360
[27] Hou, TY; LeFloch, PG, Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comput., 62, 206, 497-530 (1994) · Zbl 0809.65102 · doi:10.1090/S0025-5718-1994-1201068-0
[28] Ismail, F.; Roe, PL, Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 15, 5410-5436 (2009) · Zbl 1280.76015 · doi:10.1016/j.jcp.2009.04.021
[29] Ketcheson, DI, Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations, SIAM J. Sci. Comput., 30, 4, 2113-2136 (2008) · Zbl 1168.65382 · doi:10.1137/07070485X
[30] Ketcheson, D.I.: Relaxation Runge-Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850-2870 (2019). doi:10.1137/19M1263662. arXiv:1905.09847 [math.NA] · Zbl 1427.65115
[31] Ketcheson, DI; Mandli, K.; Ahmadia, AJ; Alghamdi, A.; De Luna, MQ; Parsani, M.; Knepley, MG; Emmett, M., Pyclaw: accessible, extensible, scalable tools for wave propagation problems, SIAM J. Sci. Comput., 34, 4, C210-C231 (2012) · Zbl 1253.65220 · doi:10.1137/110856976
[32] Ketcheson, DI; Parsani, M.; LeVeque, RJ, High-order wave propagation algorithms for hyperbolic systems, SIAM J. Sci. Comput., 35, 1, A351-A377 (2013) · Zbl 1264.65151 · doi:10.1137/110830320
[33] Keyfitz, BL, Singular shocks: retrospective and prospective, Confluentes Mathematici, 3, 3, 445-470 (2011) · Zbl 1237.35113 · doi:10.1142/S1793744211000424
[34] Keyfitz, BL; Kranzer, HC, Spaces of weighted measures for conservation laws with singular shock solutions, J. Differ. Equ., 118, 2, 420-451 (1995) · Zbl 0821.35096 · doi:10.1006/jdeq.1995.1080
[35] Kopriva, DA; Gassner, GJ, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput., 44, 2, 136-155 (2010) · Zbl 1203.65199 · doi:10.1007/s10915-010-9372-3
[36] Kreiss, HO; Scherer, G.; de Boor, C., Finite element and finite difference methods for hyperbolic partial differential equations, Mathematical Aspects of Finite Elements in Partial Differential Equations, 195-212 (1974), New York: Academic Press, New York · Zbl 0355.65085 · doi:10.1016/B978-0-12-208350-1.50012-1
[37] LeFloch, P.G.: An existence and uniqueness result for two nonstrictly hyperbolic systems. In: Nonlinear Evolution Equations that Change Type, vol. 27, Springer, New York, pp. 126-138 (1990). doi:10.1007/978-1-4613-9049-7_10 · Zbl 0727.35083
[38] LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, vol. 5, Springer, Berlin, pp. 28-72(1999). doi:10.1007/978-3-642-58535-7_2 · Zbl 0929.35088
[39] LeFloch, P.G.: Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Birkhäuser, Basel (2002). doi:10.1007/978-3-0348-8150-0 · Zbl 1019.35001
[40] LeFloch, PG, Kinetic relations for undercompressive shock waves. Physical, mathematical, and numerical issues, Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, 237-272 (2010), Providence: American Mathematical Society, Providence · Zbl 1221.35235 · doi:10.1090/conm/526/10384
[41] LeFloch, PG; Mercier, JM; Rohde, C., Fully discrete, entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal., 40, 5, 1968-1992 (2002) · Zbl 1033.65073 · doi:10.1137/S003614290240069X
[42] LeFloch, PG; Mishra, S., Numerical methods with controlled dissipation for small-scale dependent shocks, Acta Numerica, 23, 743-816 (2014) · Zbl 1398.65211 · doi:10.1017/S0962492914000099
[43] LeFloch, PG; Mohammadian, M., Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models, J. Comput. Phys., 227, 8, 4162-4189 (2008) · Zbl 1264.76055 · doi:10.1016/j.jcp.2007.12.026
[44] LeFloch, PG; Rohde, C., High-order schemes, entropy inequalities, and nonclassical shocks, SIAM J. Numer. Anal., 37, 6, 2023-2060 (2000) · Zbl 0959.35117 · doi:10.1137/S0036142998345256
[45] LeFloch, P.G., Tesdall, A.: Well-controlled entropy dissipation (WCED) schemes for capturing diffusive-dispersive shocks (in preparation)
[46] LeFloch, P.G., Tesdall, A.: Augmented hyperbolic models and diffusive-dispersive shocks (2019). arXiv:1912.03563 [math.AP]
[47] Maday, Y.; Kaber, SMO; Tadmor, E., Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., 30, 2, 321-342 (1993) · Zbl 0774.65072 · doi:10.1137/0730016
[48] Maday, Y.; Tadmor, E., Analysis of the spectral vanishing viscosity method for periodic conservation laws, SIAM J. Numer. Anal., 26, 4, 854-870 (1989) · Zbl 0678.65066 · doi:10.1137/0726047
[49] Mandli, KT; Ahmadia, AJ; Berger, M.; Calhoun, D.; George, DL; Hadjimichael, Y.; Ketcheson, DI; Lemoine, GI; LeVeque, RJ, Clawpack: building an open source ecosystem for solving hyperbolic PDEs, PeerJ Comput. Sci., 2, e68 (2016) · doi:10.7717/peerj-cs.68
[50] Mattsson, K.; Svärd, M.; Nordström, J., Stable and accurate artificial dissipation, J. Sci. Comput., 21, 1, 57-79 (2004) · Zbl 1085.76050 · doi:10.1023/B:JOMP.0000027955.75872.3f
[51] Mitsotakis, D., Ranocha, H., Ketcheson, D.I., Süli, E.: A conservative fully-discrete numerical method for the regularised shallow water wave equations (2020). arXiv:2009.09641 [math.NA]
[52] Nordström, J., A roadmap to well posed and stable problems in computational physics, J. Sci. Comput., 71, 1, 365-385 (2017) · Zbl 06849361 · doi:10.1007/s10915-016-0303-9
[53] Nordström, J.; Björck, M., Finite volume approximations and strict stability for hyperbolic problems, Appl. Numer. Math., 38, 3, 237-255 (2001) · Zbl 0985.65103 · doi:10.1016/S0168-9274(01)00027-7
[54] Öffner, P., Glaubitz, J., Ranocha, H.: Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approach. ESAIM Math. Model. Numer. Anal. (ESAIM: M2AN) 52(6), 2215-2245 (2019). doi:10.1051/m2an/2018072. arXiv:1703.03561 [math.NA] · Zbl 1420.65094
[55] Panov, EY, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Math. Notes, 55, 5, 517-525 (1994) · Zbl 0839.35029 · doi:10.1007/BF02110380
[56] Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85-133 (2017). doi:10.1007/s13137-016-0089-9. arXiv:1609.08029 [math.NA] · Zbl 1432.65156
[57] Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76(1), 216-242 (2018). doi:10.1007/s10915-017-0618-1. arXiv:1701.02264 [math.NA] · Zbl 1397.65151
[58] Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. Thesis, TU Braunschweig (2018) · Zbl 1407.65003
[59] Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20-48 (2018). doi:10.1016/j.jcp.2018.02.021. arXiv:1705.10541 [math.NA] · Zbl 1395.65054
[60] Ranocha, H.: Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives. BIT Numer. Math. 59(2), 547-563 (2019). doi:10.1007/s10543-018-0736-7. arXiv:1805.09126 [math.NA] · Zbl 1482.65151
[61] Ranocha, H., Dalcin, L., Parsani, M.: Fully-discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations. Comput. Math. Appl. 80(5), 1343-1359 (2020). doi:10.1016/j.camwa.2020.06.016. arXiv:2003.08831 [math.NA] · Zbl 1524.65677
[62] Ranocha, H., Gassner, G.J.: Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes (2020). arXiv:2009.13139 [math.NA]
[63] Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1-23 (2018). doi:10.1016/j.apnum.2018.01.019. See also arXiv:1606.00995 [math.NA] and arXiv:1606.01056 [math.NA] · Zbl 1404.65201
[64] Ranocha, H., Ketcheson, D.I.: Relaxation Runge-Kutta methods for Hamiltonian problems. J. Sci. Comput. 84(1) (2020). doi:10.1007/s10915-020-01277-y. arXiv:2001.04826 [math.NA] · Zbl 1456.65050
[65] Ranocha, H., Lóczi, L., Ketcheson, D.I.: General relaxation methods for initial-value problems with application to multistep schemes. Numerische Mathematik (2020). doi:10.1007/s00211-020-01158-4. arXiv:2003.03012 [math.NA] · Zbl 1456.65051
[66] Ranocha, H., Mitsotakis, D., Ketcheson, D.I.: A broad class of conservative numerical methods for dispersive wave equations (2020). Accept. Commun. Comput. Phys. arXiv:2006.14802 [math.NA]
[67] Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299-328 (2016). doi:10.1016/j.jcp.2016.02.009. arXiv:1511.02052 [math.NA] · Zbl 1349.65524
[68] Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13-28 (2017). doi:10.1016/j.jcp.2017.04.044. arXiv:1511.08408 [math.NA] · Zbl 1380.65318
[69] Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge-Kutta methods: fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. SIAM J. Sci. Comput. 42(2), A612-A638 (2020). doi:10.1137/19M1263480. arXiv:1905.09129 [math.NA] · Zbl 1432.76207
[70] Sanders, R.; Sever, M., The numerical study of singular shocks regularized by small viscosity, J. Sci. Comput., 19, 1-3, 385-404 (2003) · Zbl 1081.35059 · doi:10.1023/A:1025320412541
[71] Schochet, S., The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws, SIAM J. Numer. Anal., 27, 5, 1142-1159 (1990) · Zbl 0717.65075 · doi:10.1137/0727066
[72] Strand, B., Summation by parts for finite difference approximations for \(d/dx\), J. Comput. Phys., 110, 1, 47-67 (1994) · Zbl 0792.65011 · doi:10.1006/jcph.1994.1005
[73] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336 · doi:10.1016/j.jcp.2014.02.031
[74] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 179, 91-103 (1987) · Zbl 0641.65068 · doi:10.1090/S0025-5718-1987-0890255-3
[75] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 1, 30-44 (1989) · Zbl 0667.65079 · doi:10.1137/0726003
[76] Tadmor, E.; Baines, MJ; Morton, KW, Super viscosity and spectral approximations of nonlinear conservation laws, Quality and Reliability of Large-Eddy Simulations II, 69-82 (1993), Oxford: Clarendon Press, Oxford · Zbl 0805.76057
[77] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numerica, 12, 451-512 (2003) · Zbl 1046.65078 · doi:10.1017/S0962492902000156
[78] Tadmor, E.; Waagan, K., Adaptive spectral viscosity for hyperbolic conservation laws, SIAM J. Sci. Comput., 34, 2, A993-A1009 (2012) · Zbl 1250.65113 · doi:10.1137/110836456
[79] Vandeven, H., Family of spectral filters for discontinuous problems, J. Sci. Comput., 6, 2, 159-192 (1991) · Zbl 0752.35003 · doi:10.1007/BF01062118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.