Jain, Deepak; Kumar, Sanjay; Park, Choonkil Variants of \(R\)-weakly commuting mappings satisfying a weak contraction. (English) Zbl 07363686 Miskolc Math. Notes 22, No. 1, 259-271 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{D. Jain} et al., Miskolc Math. Notes 22, No. 1, 259--271 (2021; Zbl 07363686) Full Text: DOI OpenURL
Sarkar, Krishnadhan Some common fixed point theorem in metric spaces of Fisher and Sessa. (English) Zbl 1474.54244 Electron. J. Math. Anal. Appl. 8, No. 2, 10-15 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{K. Sarkar}, Electron. J. Math. Anal. Appl. 8, No. 2, 10--15 (2020; Zbl 1474.54244) Full Text: Link OpenURL
Sun, Yuxin; Gu, Feng A new common fixed point theorem for \(R\)-weakly commuting mappings in the \(S\)-metric space. (Chinese. English summary) Zbl 1463.54142 J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 1, 71-75 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 1, 71--75 (2020; Zbl 1463.54142) Full Text: DOI OpenURL
Jain, Manish; Gupta, Neetu; Kumar, Sanjay Common fixed point results for various mappings in fuzzy metric spaces with application. (English) Zbl 1431.54029 Bol. Soc. Parana. Mat. (3) 38, No. 5, 33-71 (2020). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{M. Jain} et al., Bol. Soc. Parana. Mat. (3) 38, No. 5, 33--71 (2020; Zbl 1431.54029) Full Text: Link OpenURL
Dolhare, U. P.; Nalawade, V. V. Some common fixed point theorems in probabilistic metric space using contractive condition of integral type. (English) Zbl 1476.54061 J. Ramanujan Math. Soc. 34, No. 1, 81-95 (2019). MSC: 54H25 54E40 54E70 PDF BibTeX XML Cite \textit{U. P. Dolhare} and \textit{V. V. Nalawade}, J. Ramanujan Math. Soc. 34, No. 1, 81--95 (2019; Zbl 1476.54061) Full Text: Link OpenURL
Huo, Donghua Characterization of commuting weakly additive maps on a class of algebras. (Chinese. English summary) Zbl 1449.16069 J. East China Norm. Univ., Nat. Sci. Ed. 2019, No. 4, 1-10, 18 (2019). MSC: 16U80 PDF BibTeX XML Cite \textit{D. Huo}, J. East China Norm. Univ., Nat. Sci. Ed. 2019, No. 4, 1--10, 18 (2019; Zbl 1449.16069) Full Text: DOI OpenURL
Das, Krishnapada Common fixed point results for non-compatible \(R\)-weakly commuting mappings in probabilistic semimetric spaces using control functions. (English) Zbl 07139824 Korean J. Math. 27, No. 3, 629-643 (2019). MSC: 47H10 54H25 54E70 PDF BibTeX XML Cite \textit{K. Das}, Korean J. Math. 27, No. 3, 629--643 (2019; Zbl 07139824) Full Text: DOI OpenURL
Khantwal, Deepak; Gairola, U. C. A common fixed point theorem for weakly reciprocally continuous systems of maps satisfying a general contractive condition of integral type. (English) Zbl 1449.54070 Jñānābha 49, No. 1, 67-79 (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{D. Khantwal} and \textit{U. C. Gairola}, Jñānābha 49, No. 1, 67--79 (2019; Zbl 1449.54070) Full Text: Link OpenURL
Jiang, Yun; Gu, Feng Common fixed point theorem for four mappings condition in multiplicative metric spaces. (Chinese. English summary) Zbl 1413.54128 J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 1, 83-89 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 1, 83--89 (2018; Zbl 1413.54128) Full Text: DOI OpenURL
Gopal, Dhananjay; Bisht, Ravindra K. Metrical common fixed points and commuting type mappings. (English) Zbl 1468.54040 Gopal, Dhananjay (ed.) et al., Background and recent developments of metric fixed point theory. Boca Raton, FL: CRC Press. 29-67 (2018). Reviewer: Bhavana Deshpande (Ratlam) MSC: 54H25 54E40 54-02 PDF BibTeX XML Cite \textit{D. Gopal} and \textit{R. K. Bisht}, in: Background and recent developments of metric fixed point theory. Boca Raton, FL: CRC Press. 29--67 (2018; Zbl 1468.54040) OpenURL
Beg, Ismat; Ahmed, Mohamed A.; Nafadi, Hatem A. Fixed points of \(\mathcal{L}\)-fuzzy mappings in ordered \(b\)-metric spaces. (English) Zbl 1476.54054 J. Funct. Spaces 2018, Article ID 5650242, 9 p. (2018). MSC: 54H25 54A40 54E40 54F05 PDF BibTeX XML Cite \textit{I. Beg} et al., J. Funct. Spaces 2018, Article ID 5650242, 9 p. (2018; Zbl 1476.54054) Full Text: DOI OpenURL
Babu, Gutti Venkata Ravindranadh; Negash, Alemayehu Geremew Existence of common fixed points for weakly compatible and \(C_q\)-commuting maps and invariant approximations. (English) Zbl 07245895 Thai J. Math. 15, No. 3, 761-776 (2017). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{G. V. R. Babu} and \textit{A. G. Negash}, Thai J. Math. 15, No. 3, 761--776 (2017; Zbl 07245895) Full Text: Link OpenURL
Cho, Yeol Je Survey on metric fixed point theory and applications. (English) Zbl 1383.54041 Ruzhansky, Michael (ed.) et al., Advances in real and complex analysis with applications. Selected papers based on the presentations at the 24th international conference on finite or infinite dimensional complex analysis and applications, 24ICFIDCAA, Jaipur, India, August 22–26, 2016. Singapore: Birkhäuser/Springer (ISBN 978-981-10-4336-9/hbk; 978-981-10-4337-6/ebook). Trends in Mathematics, 183-241 (2017). MSC: 54H25 54E40 54-02 PDF BibTeX XML Cite \textit{Y. J. Cho}, in: Advances in real and complex analysis with applications. Selected papers based on the presentations at the 24th international conference on finite or infinite dimensional complex analysis and applications, 24ICFIDCAA, Jaipur, India, August 22--26, 2016. Singapore: Birkhäuser/Springer. 183--241 (2017; Zbl 1383.54041) Full Text: DOI OpenURL
Xu, Zhipeng; Gu, Feng Common fixed point theorems for multiplicative expansive mappings in multiplicative metric space. (Chinese. English summary) Zbl 1389.54133 J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 3, 297-300 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Z. Xu} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 3, 297--300 (2017; Zbl 1389.54133) Full Text: DOI OpenURL
Jiang, Yun; Gu, Feng Common fixed points theorems for four maps satisfying \(\phi\)-type contractive condition in multiplicative metric spaces. (Chinese. English summary) Zbl 1389.54092 Pure Appl. Math. 33, No. 2, 185-196 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{F. Gu}, Pure Appl. Math. 33, No. 2, 185--196 (2017; Zbl 1389.54092) Full Text: DOI OpenURL
Franca, Willian Weakly commuting maps on the set of rank-1 matrices. (English) Zbl 1356.16023 Linear Multilinear Algebra 65, No. 3, 475-495 (2017). MSC: 16S50 16R60 PDF BibTeX XML Cite \textit{W. Franca}, Linear Multilinear Algebra 65, No. 3, 475--495 (2017; Zbl 1356.16023) Full Text: DOI OpenURL
Deshpande, Bhavana; Handa, Amrish Tripled coincidence and common tripled fixed point theorem for hybrid pair of mappings satisfying new contractive condition. (English) Zbl 1371.54173 East Asian Math. J. 32, No. 5, 701-716 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{B. Deshpande} and \textit{A. Handa}, East Asian Math. J. 32, No. 5, 701--716 (2016; Zbl 1371.54173) Full Text: DOI OpenURL
Rao, K. P. R.; Ali, Md. Mustaq; Babu, A. S. Coincidence point theorem for two pairs of hybrid mappings in complex valued metric spaces. (English) Zbl 1352.54035 Asia Pac. J. Math. 3, No. 2, 136-143 (2016). MSC: 54H25 47H10 54E40 54E35 PDF BibTeX XML Cite \textit{K. P. R. Rao} et al., Asia Pac. J. Math. 3, No. 2, 136--143 (2016; Zbl 1352.54035) Full Text: Link OpenURL
Shayanpour, Hamid Some results on common best proximity point and common fixed point theorem in probabilistic Menger space. (English) Zbl 1453.54042 J. Korean Math. Soc. 53, No. 5, 1037-1056 (2016). MSC: 54H25 54E40 54E70 PDF BibTeX XML Cite \textit{H. Shayanpour}, J. Korean Math. Soc. 53, No. 5, 1037--1056 (2016; Zbl 1453.54042) Full Text: DOI OpenURL
Yang, Zhongzhi Common fixed point for three pairs of self-maps satisfying weakly commuting and weakly compatible condition in generalized metric spaces. (English) Zbl 1353.54055 J. Nonlinear Sci. Appl. 9, No. 6, 3962-3979 (2016). MSC: 54H25 54E50 54E40 PDF BibTeX XML Cite \textit{Z. Yang}, J. Nonlinear Sci. Appl. 9, No. 6, 3962--3979 (2016; Zbl 1353.54055) Full Text: DOI Link OpenURL
Bouhadjera, H. More general common fixed point theorems under a new concept. (English) Zbl 1338.54158 Demonstr. Math. 49, No. 1, 64-78 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Bouhadjera}, Demonstr. Math. 49, No. 1, 64--78 (2016; Zbl 1338.54158) Full Text: DOI OpenURL
Choudhury, Amalendu; Som, T. Common fixed point results for weakly commuting maps by altering distances. (English) Zbl 07299976 South East Asian J. Math. Math. Sci. 11, No. 2, 59-68 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Choudhury} and \textit{T. Som}, South East Asian J. Math. Math. Sci. 11, No. 2, 59--68 (2015; Zbl 07299976) Full Text: Link OpenURL
Murthy, Penumarthy Parvateesam; Devi Patel, Uma Common fixed point theorems of Greguš type \((\phi, \psi)\)-weak contraction for \(R\)-weakly commuting mappings in 2-metric spaces. (English) Zbl 1371.54181 J. Oper. 2015, Article ID 195731, 9 p. (2015). MSC: 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{P. P. Murthy} and \textit{U. Devi Patel}, J. Oper. 2015, Article ID 195731, 9 p. (2015; Zbl 1371.54181) Full Text: DOI OpenURL
Murthy, Penumarthy Parvateesam; Devi Patel, Uma Common fixed point theorems using \((\psi_1,\psi_2,\phi)\)-weak contraction in partial ordered metric spaces. (English) Zbl 1462.54083 Facta Univ., Ser. Math. Inf. 30, No. 4, 445-464 (2015). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{P. P. Murthy} and \textit{U. Devi Patel}, Facta Univ., Ser. Math. Inf. 30, No. 4, 445--464 (2015; Zbl 1462.54083) OpenURL
Rhoades, B. E. Fixed point theorems for occasionally weakly compatible mappings. II. (English) Zbl 1460.54058 Filomat 29, No. 5, 963-967 (2015). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{B. E. Rhoades}, Filomat 29, No. 5, 963--967 (2015; Zbl 1460.54058) Full Text: DOI OpenURL
Das, Nanda Ram; Saha, Mintu Lal On fixed points in complete fuzzy normed linear spaces. (English) Zbl 1334.47075 Ann. Fuzzy Math. Inform. 10, No. 4, 515-524 (2015). MSC: 47S40 47H10 PDF BibTeX XML Cite \textit{N. R. Das} and \textit{M. L. Saha}, Ann. Fuzzy Math. Inform. 10, No. 4, 515--524 (2015; Zbl 1334.47075) Full Text: Link OpenURL
Deshpande, Bhavana; Handa, Amrish Common coupled fixed point for hybrid pair of mappings under generalized nonlinear contraction. (English) Zbl 1334.54062 East Asian Math. J. 31, No. 1, 77-89 (2015). MSC: 54H25 54E40 54C60 PDF BibTeX XML Cite \textit{B. Deshpande} and \textit{A. Handa}, East Asian Math. J. 31, No. 1, 77--89 (2015; Zbl 1334.54062) Full Text: DOI OpenURL
Yang, Zhongzhi; Sadati, Hassan; Sedghi, Shaban; Shobe, Nabi Common fixed point theorems for non-compatible self-maps in \(b\)-metric spaces. (English) Zbl 1437.54075 J. Nonlinear Sci. Appl. 8, No. 6, 1022-1031 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Z. Yang} et al., J. Nonlinear Sci. Appl. 8, No. 6, 1022--1031 (2015; Zbl 1437.54075) Full Text: DOI Link OpenURL
Pant, B. D.; Chauhan, Sunny; Chaudhari, Shikha An integral type fixed point theorem in generalized metric space. (English) Zbl 1325.54044 Panam. Math. J. 25, No. 2, 52-70 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{B. D. Pant} et al., Panam. Math. J. 25, No. 2, 52--70 (2015; Zbl 1325.54044) OpenURL
Kumam, Poom; Sintunavarat, Wutiphol; Sedghi, Shaban; Shobkolaei, Nabi Common fixed point of two \(R\)-weakly commuting mappings in \(b\)-metric spaces. (English) Zbl 1341.54031 J. Funct. Spaces 2015, Article ID 350840, 5 p. (2015). Reviewer: Stefan Czerwik (Łaziska Górne) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{P. Kumam} et al., J. Funct. Spaces 2015, Article ID 350840, 5 p. (2015; Zbl 1341.54031) Full Text: DOI OpenURL
Manro, S. A common fixed point theorem in fuzzy metric space using implicit relation. (English) Zbl 1320.54037 Int. J. Math. Stat. 16, No. 2, 35-42 (2015). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro}, Int. J. Math. Stat. 16, No. 2, 35--42 (2015; Zbl 1320.54037) Full Text: Link OpenURL
Chauhan, Sunny; Vujaković, Jelena; Haq, Shamsul Employing common limit range property with variants of \(R\)-weakly commuting mappings in metric spaces. (English) Zbl 1321.54075 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 22, No. 2, 127-138 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Chauhan} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 22, No. 2, 127--138 (2015; Zbl 1321.54075) Full Text: DOI OpenURL
Manro, Saurabh; Tomar, Anita Common fixed point theorems for \(R\)-weakly commuting maps satisfying common property \((E. A.)\) in intuitionistic fuzzy metric spaces using implicit relation. (English) Zbl 1330.54061 J. Indian Math. Soc., New Ser. 82, No. 1-2, 79-95 (2015). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro} and \textit{A. Tomar}, J. Indian Math. Soc., New Ser. 82, No. 1--2, 79--95 (2015; Zbl 1330.54061) OpenURL
Roldán-López-de-Hierro, Antonio-Francisco; Karapınar, Erdal; Alsulami, Hamed H. A short-note on ‘common fixed point theorems for non-compatible self-maps in generalized metric spaces’. (English) Zbl 1333.54049 J. Inequal. Appl. 2015, Paper No. 55, 14 p. (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A.-F. Roldán-López-de-Hierro} et al., J. Inequal. Appl. 2015, Paper No. 55, 14 p. (2015; Zbl 1333.54049) Full Text: DOI OpenURL
Ćirić, Ljubomir; Petrot, Narin; Promsinchai, Pornthip Some fixed point theorems for a pair type of Bogin-Popescu mappings in complete metric spaces. (English) Zbl 1320.54030 J. Nonlinear Convex Anal. 16, No. 3, 551-562 (2015). MSC: 54H25 54E50 54E40 PDF BibTeX XML Cite \textit{L. Ćirić} et al., J. Nonlinear Convex Anal. 16, No. 3, 551--562 (2015; Zbl 1320.54030) Full Text: Link OpenURL
Singh, Deepak; Ahmed, Amin; Singh, Madhu; Tomar, Surjeet Singh A common fixed point theorem via family of R-weakly commuting maps. (English) Zbl 1413.54184 J. Nonlinear Anal. Optim. 5, No. 1, 115-123 (2014). MSC: 54H25 54E70 PDF BibTeX XML Cite \textit{D. Singh} et al., J. Nonlinear Anal. Optim. 5, No. 1, 115--123 (2014; Zbl 1413.54184) Full Text: Link OpenURL
Yang, Zhongzhi Common fixed point theorems for non-compatible self-maps in generalized metric spaces. (English) Zbl 1469.54205 J. Inequal. Appl. 2014, Paper No. 275, 12 p. (2014). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{Z. Yang}, J. Inequal. Appl. 2014, Paper No. 275, 12 p. (2014; Zbl 1469.54205) Full Text: DOI OpenURL
Rashwan, R. A.; Hammad, H. A. Common fixed point theorems for pairs of single and multivalued \(D\)-maps and tangential multivalued mappings satisfying contractive condition of integral inequality. (English) Zbl 1446.47041 Bull. Int. Math. Virtual Inst. 4, No. 2, 109-122 (2014). MSC: 47H10 PDF BibTeX XML Cite \textit{R. A. Rashwan} and \textit{H. A. Hammad}, Bull. Int. Math. Virtual Inst. 4, No. 2, 109--122 (2014; Zbl 1446.47041) OpenURL
Manro, Saurabh A common fixed point theorem for four mappings in intuitionistic fuzzy metric space. (English) Zbl 1389.54101 Gulf J. Math. 2, No. 4, 78-86 (2014). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro}, Gulf J. Math. 2, No. 4, 78--86 (2014; Zbl 1389.54101) OpenURL
Deshpande, Bhavana; Handa, Amrish Quadruple coincidence and common quadruple fixed point for hybrid pair of mappings under new contractive condition. (English) Zbl 1349.54094 Math. Morav. 18, No. 2, 73-90 (2014). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{B. Deshpande} and \textit{A. Handa}, Math. Morav. 18, No. 2, 73--90 (2014; Zbl 1349.54094) Full Text: Link OpenURL
Deshpande, Bhavana; Pathak, Rohit Common fixed point theorems for hybrid pairs of mappings using implicit relations. (English) Zbl 1349.54096 Math. Morav. 18, No. 1, 9-20 (2014). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{B. Deshpande} and \textit{R. Pathak}, Math. Morav. 18, No. 1, 9--20 (2014; Zbl 1349.54096) OpenURL
Manro, Saurabh Weak reciprocal continuity and common fixed point theorems in Menger spaces using implicit relation. (English) Zbl 1329.54048 Panam. Math. J. 24, No. 4, 14-25 (2014). Reviewer: Cihangir Alaca (Manisa) MSC: 54H25 54E40 54E70 PDF BibTeX XML Cite \textit{S. Manro}, Panam. Math. J. 24, No. 4, 14--25 (2014; Zbl 1329.54048) OpenURL
Sintunavarat, Wutiphol; Lee, Dong Min; Cho, Yeol Je Mizoguchi-Takahashi’s type common fixed point theorems without \(T\)-weakly commuting condition and invariant approximations. (English) Zbl 1328.54052 Fixed Point Theory Appl. 2014, Paper No. 112, 10 p. (2014). MSC: 54H25 54C60 54E50 PDF BibTeX XML Cite \textit{W. Sintunavarat} et al., Fixed Point Theory Appl. 2014, Paper No. 112, 10 p. (2014; Zbl 1328.54052) Full Text: DOI OpenURL
Sintunavarat, Wutiphol; Chauhan, Sunny; Kumam, Poom Some fixed point results in modified intuitionistic fuzzy metric spaces. (English) Zbl 1316.54021 Afr. Mat. 25, No. 2, 461-473 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{W. Sintunavarat} et al., Afr. Mat. 25, No. 2, 461--473 (2014; Zbl 1316.54021) Full Text: DOI OpenURL
Ali, Muhammad Usman Mizoguchi-Takahashi’s type common fixed point theorem. (English) Zbl 1298.54026 J. Egypt. Math. Soc. 22, No. 2, 272-274 (2014). MSC: 54H25 PDF BibTeX XML Cite \textit{M. U. Ali}, J. Egypt. Math. Soc. 22, No. 2, 272--274 (2014; Zbl 1298.54026) Full Text: DOI OpenURL
Kang, Shin Min; Kumar, Sanjay; Gupta, Vishal; Singh, Balbir Some common fixed point theorems for weakly reciprocally continuous mappings in a fuzzy metric space. (English) Zbl 1309.54018 Int. J. Pure Appl. Math. 93, No. 2, 261-274 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. M. Kang} et al., Int. J. Pure Appl. Math. 93, No. 2, 261--274 (2014; Zbl 1309.54018) Full Text: DOI Link OpenURL
Manro, Saurabh; Kang, Shin Min Common fixed point theorems for weakly commuting mappings with property (E.A.) in intuitionistic fuzzy metric spaces. (English) Zbl 1308.54028 Int. J. Pure Appl. Math. 93, No. 2, 217-228 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro} and \textit{S. M. Kang}, Int. J. Pure Appl. Math. 93, No. 2, 217--228 (2014; Zbl 1308.54028) Full Text: DOI Link OpenURL
Phaneendra, T.; Prasad, V. S. R. Two generalized common fixed point theorems involving compatibility and property E.A. (English) Zbl 1293.54034 Demonstr. Math. 47, No. 2, 449-458 (2014). MSC: 54H25 PDF BibTeX XML Cite \textit{T. Phaneendra} and \textit{V. S. R. Prasad}, Demonstr. Math. 47, No. 2, 449--458 (2014; Zbl 1293.54034) Full Text: DOI OpenURL
Manro, Saurabh; Kang, Shin Min Common fixed point theorems for four mappings in intuitionistic fuzzy metric spaces. (English) Zbl 1304.54086 Int. J. Pure Appl. Math. 91, No. 2, 253-264 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro} and \textit{S. M. Kang}, Int. J. Pure Appl. Math. 91, No. 2, 253--264 (2014; Zbl 1304.54086) Full Text: DOI Link OpenURL
Park, Jong Seo Common fixed point of single and multivalued maps satisfying weakly commuting in IFMS. (English) Zbl 1468.54061 Honam Math. J. 36, No. 1, 157-165 (2014). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{J. S. Park}, Honam Math. J. 36, No. 1, 157--165 (2014; Zbl 1468.54061) Full Text: DOI OpenURL
Kang, Shin Min; Kumar, Manoj; Kumar, Pankaj; Kumar, Sanjay Fixed point theorems for \(\phi\)-weakly expansive mappings in metric spaces. (English) Zbl 1300.54072 Int. J. Pure Appl. Math. 90, No. 2, 143-152 (2014). Reviewer: Ioan A. Rus (Cluj-Napoca) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. M. Kang} et al., Int. J. Pure Appl. Math. 90, No. 2, 143--152 (2014; Zbl 1300.54072) Full Text: DOI Link OpenURL
Khan, Q. H.; Khan, Suhel Ahmad Some fixed point theorem in metric spaces. (English) Zbl 1297.54087 J. Indian Acad. Math. 35, No. 2, 287-294 (2013). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{Q. H. Khan} and \textit{S. A. Khan}, J. Indian Acad. Math. 35, No. 2, 287--294 (2013; Zbl 1297.54087) OpenURL
Ali, Muhammad Usman; Kamran, Tayyab Hybrid generalized contractions. (English) Zbl 1295.54041 Math. Sci., Springer 7, Paper No. 29, 5 p. (2013). MSC: 54H25 54E40 54C60 PDF BibTeX XML Cite \textit{M. U. Ali} and \textit{T. Kamran}, Math. Sci., Springer 7, Paper No. 29, 5 p. (2013; Zbl 1295.54041) Full Text: DOI OpenURL
Gu, Feng; Yang, Zhongzhi Some new common fixed point results for three pairs of mappings in generalized metric spaces. (English) Zbl 1469.54103 Fixed Point Theory Appl. 2013, Paper No. 174, 21 p. (2013). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{F. Gu} and \textit{Z. Yang}, Fixed Point Theory Appl. 2013, Paper No. 174, 21 p. (2013; Zbl 1469.54103) Full Text: DOI OpenURL
Aydi, H. On common fixed point theorems for \((\psi,\varphi)\)-generalized \(f\)-weakly contractive mappings. (English) Zbl 1299.54082 Miskolc Math. Notes 14, No. 1, 19-30 (2013). MSC: 54H25 47H10 54E50 PDF BibTeX XML Cite \textit{H. Aydi}, Miskolc Math. Notes 14, No. 1, 19--30 (2013; Zbl 1299.54082) OpenURL
Pathak, Rohit Hybrid pairs of maps in consideration of common fixed point theorems using property (E. A). (English) Zbl 1299.54106 Math. Morav. 17, No. 2, 15-22 (2013). MSC: 54H25 PDF BibTeX XML Cite \textit{R. Pathak}, Math. Morav. 17, No. 2, 15--22 (2013; Zbl 1299.54106) OpenURL
Prasad, Bhagwati; Sahni, Ritu Common fixed point theorems for \(\psi\)-weakly commuting maps in fuzzy metric space. (English) Zbl 1304.54089 Acta Comment. Univ. Tartu. Math. 17, No. 2, 117-126 (2013). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E50 PDF BibTeX XML Cite \textit{B. Prasad} and \textit{R. Sahni}, Acta Comment. Univ. Tartu. Math. 17, No. 2, 117--126 (2013; Zbl 1304.54089) Full Text: DOI OpenURL
Khan, Abdul Rahim; Abbas, Mujahid; Ali, Basit Tripled coincidence and common fixed point theorems for hybrid pair of mappings. (English) Zbl 1289.54130 Creat. Math. Inform. 22, No. 1, 53-64 (2013). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. R. Khan} et al., Creat. Math. Inform. 22, No. 1, 53--64 (2013; Zbl 1289.54130) OpenURL
Singh, Deepak; Ahmed, Amin Fixed point theorems via family of maps in weak non-Archimedean Menger PM-spaces. (English) Zbl 1294.54041 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 20, No. 3, 181-198 (2013). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{D. Singh} and \textit{A. Ahmed}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 20, No. 3, 181--198 (2013; Zbl 1294.54041) Full Text: DOI OpenURL
Manro, Saurabh; Kumar, Sanjay; Bhatia, Satwinder Singh; Kang, Shin Min Common fixed point theorems for contraction mappings using weak reciprocal continuity. (English) Zbl 1278.54038 Int. J. Pure Appl. Math. 88, No. 1, 77-90 (2013). MSC: 54H25 54E40 54E70 PDF BibTeX XML Cite \textit{S. Manro} et al., Int. J. Pure Appl. Math. 88, No. 1, 77--90 (2013; Zbl 1278.54038) Full Text: DOI Link OpenURL
Kaewcharoen, Anchalee Fixed point theorems and convergence theorems for generalized nonexpansive mappings. (English) Zbl 1475.47090 Far East J. Math. Sci. (FJMS) 77, No. 1, 85-104 (2013). MSC: 47J26 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{A. Kaewcharoen}, Far East J. Math. Sci. (FJMS) 77, No. 1, 85--104 (2013; Zbl 1475.47090) Full Text: Link OpenURL
Park, Jong Seo Some common fixed point theorems for the weakly commuting maps on intuitionistic fuzzy metric space. (English) Zbl 1275.54034 Far East J. Math. Sci. (FJMS) 76, No. 1, 97-104 (2013). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 PDF BibTeX XML Cite \textit{J. S. Park}, Far East J. Math. Sci. (FJMS) 76, No. 1, 97--104 (2013; Zbl 1275.54034) Full Text: Link OpenURL
Shatanawi, Wasfi; Chauhan, Sunny; Postolache, Mihai; Abbas, Mujahid; Radenović, Stojan Common fixed points for contractive mappings of integral type in \(G\)-metric spaces. (English) Zbl 1278.54047 J. Adv. Math. Stud. 6, No. 1, 53-72 (2013). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{W. Shatanawi} et al., J. Adv. Math. Stud. 6, No. 1, 53--72 (2013; Zbl 1278.54047) OpenURL
Saluja, A. S.; Jain, Mukesh Kumar; Jhade, Pankaj Kumar Weak semi compatibility and fixed point theorems. (English) Zbl 1446.47044 Bull. Int. Math. Virtual Inst. 2, No. 2, 205-217 (2012). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{A. S. Saluja} et al., Bull. Int. Math. Virtual Inst. 2, No. 2, 205--217 (2012; Zbl 1446.47044) Full Text: Link OpenURL
Sedghi, Shaban; Alaca, Cihangir; Shobe, Nabi On fixed points of weakly commuting mappings with property (E.A). (English) Zbl 1338.54134 J. Adv. Stud. Topol. 3, No. 3, 11-17 (2012). MSC: 54E40 54A40 54H25 PDF BibTeX XML Cite \textit{S. Sedghi} et al., J. Adv. Stud. Topol. 3, No. 3, 11--17 (2012; Zbl 1338.54134) Full Text: DOI Link OpenURL
Gopal, D.; Imdad, M.; Hasan, M.; Patel, D. K. An erratum to: “Proving common fixed point theorems for Lipschitz type mappings via absorbing pairs”. (English) Zbl 1314.47080 Bull. Math. Anal. Appl. 4, No. 4, 45-46 (2012). MSC: 47H10 PDF BibTeX XML Cite \textit{D. Gopal} et al., Bull. Math. Anal. Appl. 4, No. 4, 45--46 (2012; Zbl 1314.47080) Full Text: Link OpenURL
Manro, Saurabh; Bhatia, S. S.; Kumar, Sanjay Common fixed point theorems in fuzzy metric spaces. (English) Zbl 1301.54020 Ann. Fuzzy Math. Inform. 3, No. 1, 151-158 (2012). MSC: 54A40 54E35 54H25 PDF BibTeX XML Cite \textit{S. Manro} et al., Ann. Fuzzy Math. Inform. 3, No. 1, 151--158 (2012; Zbl 1301.54020) Full Text: Link OpenURL
Sintunavarat, Wutiphol; Kumam, Poom Common fixed points for \(R\)-weakly commuting in fuzzy metric spaces. (English) Zbl 1302.54088 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 58, No. 2, 389-406 (2012). MSC: 54H25 54E40 47H10 54E99 PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{P. Kumam}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 58, No. 2, 389--406 (2012; Zbl 1302.54088) Full Text: DOI OpenURL
Alamgir Khan, M.; Sumitra Common fixed point theorems for converse commuting and OWC maps in fuzzy metric spaces. (English) Zbl 1291.54047 J. Math., Punjab Univ. 44, 57-63 (2012). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{M. Alamgir Khan} and \textit{Sumitra}, J. Math., Punjab Univ. 44, 57--63 (2012; Zbl 1291.54047) Full Text: Link OpenURL
Sintunavarat, Wutiphol; Kim, Jong Kyu; Kumam, Poom Fixed point theorems for a generalized almost \((\phi ,{\varphi})\)-contraction with respect to \(S\) in ordered metric spaces. (English) Zbl 1304.54097 J. Inequal. Appl. 2012, Paper No. 263, 11 p. (2012). Reviewer: Mădălina Păcurar (Cluj-Napoca) MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{W. Sintunavarat} et al., J. Inequal. Appl. 2012, Paper No. 263, 11 p. (2012; Zbl 1304.54097) Full Text: DOI OpenURL
Manro, Saurabh; Kumam, Poom Common fixed point theorems for expansion mappings in various abstract spaces using the concept of weak reciprocal continuity. (English) Zbl 1278.54037 Fixed Point Theory Appl. 2012, Paper No. 221, 12 p. (2012); erratum ibid. 2013, Paper No. 8 (2013). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. Manro} and \textit{P. Kumam}, Fixed Point Theory Appl. 2012, Paper No. 221, 12 p. (2012; Zbl 1278.54037) Full Text: DOI OpenURL
Gopal, Dhananjay; Imdad, Mohammad; Abbas, Mujahid Metrical common fixed point theorems without completeness and closedness. (English) Zbl 1274.54124 Fixed Point Theory Appl. 2012, Paper No. 18, 9 p. (2012). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{D. Gopal} et al., Fixed Point Theory Appl. 2012, Paper No. 18, 9 p. (2012; Zbl 1274.54124) Full Text: DOI OpenURL
Abbas, Mujahid; Ćirić, Ljubomir; Damjanović, Bosko; Khan, Muhammad Ali Coupled coincidence and common fixed point theorems for hybrid pair of mappings. (English) Zbl 1281.54014 Fixed Point Theory Appl. 2012, Paper No. 4, 11 p. (2012). MSC: 54H25 54C60 54E50 PDF BibTeX XML Cite \textit{M. Abbas} et al., Fixed Point Theory Appl. 2012, Paper No. 4, 11 p. (2012; Zbl 1281.54014) Full Text: DOI OpenURL
Tiwari, Rahul; Shukla, D. P.; Bhardwaj, Nagender Common fixed point theorem for six maps in d-complete topological spaces. (English) Zbl 1267.54059 Int. J. Math. Anal., Ruse 6, No. 41-44, 2041-2047 (2012). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{R. Tiwari} et al., Int. J. Math. Anal., Ruse 6, No. 41--44, 2041--2047 (2012; Zbl 1267.54059) Full Text: Link OpenURL
Shatanawi, W.; Abbas, M. On weakly commuting maps and common fixed point results for four maps in \(G\)-metric spaces. (English) Zbl 1271.54087 Hacet. J. Math. Stat. 41, No. 6, 823-830 (2012). MSC: 54H25 47H10 54E50 PDF BibTeX XML Cite \textit{W. Shatanawi} and \textit{M. Abbas}, Hacet. J. Math. Stat. 41, No. 6, 823--830 (2012; Zbl 1271.54087) OpenURL
Gu, Feng; Ye, Hongqing Common fixed point theorems of Altman integral type mappings in \(G\)-metric spaces. (English) Zbl 1396.54038 Abstr. Appl. Anal. 2012, Article ID 630457, 13 p. (2012). MSC: 54H25 54E40 54E50 47H10 PDF BibTeX XML Cite \textit{F. Gu} and \textit{H. Ye}, Abstr. Appl. Anal. 2012, Article ID 630457, 13 p. (2012; Zbl 1396.54038) Full Text: DOI OpenURL
Sharma, Arvind Kumar; Badshah, V. H.; Gupta, V. K.; Sharma, Ajay A common fixed point theorem for three self mappings in a fuzzy metric space. (English) Zbl 1273.54074 Int. J. Contemp. Math. Sci. 7, No. 29-32, 1509-1518 (2012). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{A. K. Sharma} et al., Int. J. Contemp. Math. Sci. 7, No. 29--32, 1509--1518 (2012; Zbl 1273.54074) Full Text: Link OpenURL
Samanta, T. K.; Dinda, B.; Mohinta, S.; Roy, San Jay; Ghosh, J. On coincindence and fixed-point theorems in fuzzy symmetric spaces. (English) Zbl 1269.54031 J. Hyperstruct. 1, No. 1, 74-91 (2012). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{T. K. Samanta} et al., J. Hyperstruct. 1, No. 1, 74--91 (2012; Zbl 1269.54031) OpenURL
Choudhury, Binayak S.; Kutukcu, Servet; Das, Krishnapada On fixed points in non-Archimedean Menger PM-spaces. (English) Zbl 1293.54020 Kochi J. Math. 7, 41-50 (2012). Reviewer: S. L. Singh (Rishikesh) MSC: 54H25 54E70 47S10 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Kochi J. Math. 7, 41--50 (2012; Zbl 1293.54020) OpenURL
Park, Jong Seo Common fixed point theorem for weakly commuting using implicit relation on intuitionistic fuzzy metric space. (English) Zbl 1281.54037 Honam Math. J. 34, No. 1, 77-84 (2012). Reviewer: Nan-Jing Huang (Chengdu) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{J. S. Park}, Honam Math. J. 34, No. 1, 77--84 (2012; Zbl 1281.54037) Full Text: DOI Link OpenURL
Shobe, Nabi; Sedgh, Shaban; Choudhury, Binayak S. Relation between metric and fuzzy metric spaces and some fixed point theorems. (English) Zbl 1236.54046 J. Appl. Math. Inform. 30, No. 1-2, 265-278 (2012). MSC: 54H25 54A40 54E40 54E35 PDF BibTeX XML Cite \textit{N. Shobe} et al., J. Appl. Math. Inform. 30, No. 1--2, 265--278 (2012; Zbl 1236.54046) OpenURL
Gopal, D.; Imdad, M.; Hasan, M.; Patel, D. K. Proving common fixed point theorems for Lipschitz type mappings via absorbing pairs. (Proving common fixed point theorems for Lipschitz type mappings via absorbing pair.) (English) Zbl 1314.47081 Bull. Math. Anal. Appl. 3, No. 4, 92-100 (2011); erratum ibid. 4, No. 4, 45-46 (2012). MSC: 47H10 PDF BibTeX XML Cite \textit{D. Gopal} et al., Bull. Math. Anal. Appl. 3, No. 4, 92--100 (2011; Zbl 1314.47081) Full Text: Link OpenURL
Al-Mezel, Saleh Abdullah Common fixed points and best approximations in locally convex spaces. (English) Zbl 1275.41039 Fixed Point Theory Appl. 2011, Paper No. 99, 9 p. (2011). MSC: 41A65 46A03 47H10 54H25 PDF BibTeX XML Cite \textit{S. A. Al-Mezel}, Fixed Point Theory Appl. 2011, Paper No. 99, 9 p. (2011; Zbl 1275.41039) Full Text: DOI OpenURL
Abbas, Mujahid; Khan, Safeer Hussain; Nazir, Talat Common fixed points of \(R\)-weakly commuting maps in generalized metric spaces. (English) Zbl 1271.54069 Fixed Point Theory Appl. 2011, Paper No. 41, 11 p. (2011). MSC: 54H25 47H10 54E50 PDF BibTeX XML Cite \textit{M. Abbas} et al., Fixed Point Theory Appl. 2011, Paper No. 41, 11 p. (2011; Zbl 1271.54069) Full Text: DOI OpenURL
Naidu, G. A.; Latha, Madhavi Common fixed point theorems for three partially commuting selfmaps. (English) Zbl 1263.54058 Acta Cienc. Indica, Math. 37, No. 4, 493-498 (2011). MSC: 54H25 PDF BibTeX XML Cite \textit{G. A. Naidu} and \textit{M. Latha}, Acta Cienc. Indica, Math. 37, No. 4, 493--498 (2011; Zbl 1263.54058) OpenURL
Khan, M. Alamgir; Sumitra; Chugh, Renu Common fixed point theorems for occasionally weakly compatible maps in fuzzy metric spaces. (English) Zbl 1273.54061 Int. Math. Forum 6, No. 37-40, 1825-1836 (2011). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{M. A. Khan} et al., Int. Math. Forum 6, No. 37--40, 1825--1836 (2011; Zbl 1273.54061) Full Text: Link OpenURL
Shrivastava, Rajesh; M., Vijyakumar; Kohli, Manavi; Singhvi, Jitendra; Bhardwaj, Ramakant Some common fixed points for R-weakly commuting maps in fuzzy metric spaces. (English) Zbl 1248.54032 Int. J. Contemp. Math. Sci. 6, No. 33-36, 1629-1634 (2011). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{R. Shrivastava} et al., Int. J. Contemp. Math. Sci. 6, No. 33--36, 1629--1634 (2011; Zbl 1248.54032) Full Text: Link OpenURL
Manro, S.; Kumar, S.; Bhatia, S. S. \(R\)-weakly commuting maps in \(G\)-metric spaces. (English) Zbl 1237.54055 Fasc. Math. 47, 11-17 (2011). MSC: 54H25 54E50 PDF BibTeX XML Cite \textit{S. Manro} et al., Fasc. Math. 47, 11--17 (2011; Zbl 1237.54055) OpenURL
Sastry, K. P. R.; Naidu, G. A.; Prasad, P. V. S.; Sastri, S. S. A. A common fixed point theorem for \(\Phi\)-weakly commuting mappings in metric spaces. (English) Zbl 1226.54059 Int. Math. Forum 6, No. 1-4, 133-139 (2011). MSC: 54H25 54E50 PDF BibTeX XML Cite \textit{K. P. R. Sastry} et al., Int. Math. Forum 6, No. 1--4, 133--139 (2011; Zbl 1226.54059) Full Text: Link OpenURL
Pant, R. P.; Bisht, R. K.; Arora, D. Weak reciprocal continuity and fixed point theorems. (English) Zbl 1223.54068 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 57, No. 1, 181-190 (2011). Reviewer: In-Sook Kim (Suwon) MSC: 54H25 47H10 47H09 54E40 PDF BibTeX XML Cite \textit{R. P. Pant} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 57, No. 1, 181--190 (2011; Zbl 1223.54068) Full Text: DOI OpenURL
Sintunavarat, Wutiphol; Kumam, Poom Coincidence and common fixed points for generalized contraction multi-valued mappings. (English) Zbl 1221.47095 J. Comput. Anal. Appl. 13, No. 2, 362-367 (2011). MSC: 47H09 54H25 54C60 47H10 PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{P. Kumam}, J. Comput. Anal. Appl. 13, No. 2, 362--367 (2011; Zbl 1221.47095) OpenURL
Kumar Vijaywar, Yogesh; Bawa, N. P. S.; Shrivastava, P. K.; Shukla, D. P.; Gautam, Aknksha; Pouranik, R.; Pandey, Dileep Kumar Common fixed point theorems for hybrid pairs of compatible type (N) maps. (English. English summary) Zbl 1217.54047 Indian J. Sci. Res. 2, No. 3, 125-127 (2011). MSC: 54H25 PDF BibTeX XML Cite \textit{Y. Kumar Vijaywar} et al., Indian J. Sci. Res. 2, No. 3, 125--127 (2011; Zbl 1217.54047) OpenURL
Saini, R. K.; Kumar, S.; Mohammed, P. Common fixed point theorem for hybrid pairs of \(R\)-weakly commuting mappings. (English) Zbl 1399.54154 Surv. Math. Appl. 5, 265-273 (2010). MSC: 54H25 47H10 03E72 PDF BibTeX XML Cite \textit{R. K. Saini} et al., Surv. Math. Appl. 5, 265--273 (2010; Zbl 1399.54154) Full Text: EMIS OpenURL
Kumar, Sanjay A note on Jungck’s fixed point theorem. (English) Zbl 1277.54035 Fasc. Math. 45, 59-69 (2010). Reviewer: Dariusz Bugajewski (Poznań) MSC: 54H25 54E50 PDF BibTeX XML Cite \textit{S. Kumar}, Fasc. Math. 45, 59--69 (2010; Zbl 1277.54035) Full Text: Link OpenURL
Goyal, A. K. Relative asymptotic regularity and common fixed points. (English) Zbl 1244.54092 J. Indian Acad. Math. 32, No. 1, 89-95 (2010). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{A. K. Goyal}, J. Indian Acad. Math. 32, No. 1, 89--95 (2010; Zbl 1244.54092) OpenURL
Manro, Saurabh; Bhatia, S. S.; Kumar, Sanjay Expansion mapping theorems in \(G\)-metric spaces. (English) Zbl 1284.54060 Int. J. Contemp. Math. Sci. 5, No. 49-52, 2529-2535 (2010). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Manro} et al., Int. J. Contemp. Math. Sci. 5, No. 49--52, 2529--2535 (2010; Zbl 1284.54060) Full Text: Link OpenURL
Prasad, Bhagwati; Singh, Bani; Sahni, Ritu Common fixed point theorems with integral inequality. (English) Zbl 1216.54017 Appl. Math. Sci., Ruse 4, No. 45-48, 2369-2377 (2010). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{B. Prasad} et al., Appl. Math. Sci., Ruse 4, No. 45--48, 2369--2377 (2010; Zbl 1216.54017) Full Text: Link OpenURL
Singhi, Jitendra; Bhardwaj, Ramakant; Agrawal, Sarvesh; Shrivastava, Rajesh Fixed point theorem in fuzzy metric spaces. (English) Zbl 1264.54071 Int. Math. Forum 5, No. 29-32, 1473-1480 (2010). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{J. Singhi} et al., Int. Math. Forum 5, No. 29--32, 1473--1480 (2010; Zbl 1264.54071) Full Text: Link OpenURL
Kumar, Sanjay; Garg, S. K.; Vats, Ramesh Kumar Fixed point theorems for coincidence maps in intuitionistic fuzzy metric space. (English) Zbl 1218.54043 Int. J. Math. Anal., Ruse 4, No. 9-12, 537-545 (2010). Reviewer: Bhavana Deshpande (Ratlam) MSC: 54H25 54A40 54E99 PDF BibTeX XML Cite \textit{S. Kumar} et al., Int. J. Math. Anal., Ruse 4, No. 9--12, 537--545 (2010; Zbl 1218.54043) Full Text: Link OpenURL
Rathore, M. S.; Singh, Deepak; Singh, Naval Common fixed point theorems for S-weakly commuting, S-compatible and RS-weakly commuting mappings of complete S-fuzzy metric spaces. (English) Zbl 1200.54024 Int. J. Math. Anal., Ruse 4, No. 1-4, 75-87 (2010). MSC: 54H25 47H10 54A40 PDF BibTeX XML Cite \textit{M. S. Rathore} et al., Int. J. Math. Anal., Ruse 4, No. 1--4, 75--87 (2010; Zbl 1200.54024) Full Text: Link OpenURL