Sharma, Varsha Common fixed point theorem in Menger space using \((CLRg)\) property. (English) Zbl 07246076 Electron. J. Math. Analysis Appl. 9, No. 1, 59-66 (2021). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{V. Sharma}, Electron. J. Math. Analysis Appl. 9, No. 1, 59--66 (2021; Zbl 07246076) Full Text: Link
Jain, Shobha; Jain, Shishir Compatible and weakly compatible maps in a complex fuzzy metric space. (English) Zbl 07314234 Jordan J. Math. Stat. 13, No. 2, 249-267 (2020). MSC: 40H05 46A45 PDF BibTeX XML Cite \textit{S. Jain} and \textit{S. Jain}, Jordan J. Math. Stat. 13, No. 2, 249--267 (2020; Zbl 07314234) Full Text: Link
Rao, N. Seshagiri; Kalyani, K.; Khatri, Kejal Contractive mapping theorems in partially ordered metric spaces. (English) Zbl 1451.54021 Cubo 22, No. 2, 203-214 (2020). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{N. S. Rao} et al., Cubo 22, No. 2, 203--214 (2020; Zbl 1451.54021) Full Text: DOI
Rashid, M. H. M.; Almahadin, S. A. Common fixed point theorem for occasionally weakly compatible mappings in probabilistic metric spaces. (English) Zbl 07246064 Electron. J. Math. Analysis Appl. 8, No. 2, 261-271 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. H. M. Rashid} and \textit{S. A. Almahadin}, Electron. J. Math. Analysis Appl. 8, No. 2, 261--271 (2020; Zbl 07246064) Full Text: Link
Berrah, Khaled; Aliouche, Abdelkrim; Ousseif, Takieddine Common fixed point theorems under Pata’s contraction in complex valued metric spaces and an application to integral equations. (English) Zbl 1444.54020 Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 647-656 (2020). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 47H10 45G15 PDF BibTeX XML Cite \textit{K. Berrah} et al., Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 647--656 (2020; Zbl 1444.54020) Full Text: DOI
Jain, Manish; Gupta, Neetu; Kumar, Sanjay Common fixed point results for various mappings in fuzzy metric spaces with application. (English) Zbl 1431.54029 Bol. Soc. Parana. Mat. (3) 38, No. 5, 33-71 (2020). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{M. Jain} et al., Bol. Soc. Parana. Mat. (3) 38, No. 5, 33--71 (2020; Zbl 1431.54029) Full Text: Link
Alfaqih, Waleed Mohd.; Imdad, Mohammad; Rouzkard, Fayyaz Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications. (English) Zbl 1431.54023 Bol. Soc. Parana. Mat. (3) 38, No. 4, 9-29 (2020). MSC: 54H25 54E40 45G10 PDF BibTeX XML Cite \textit{W. Mohd. Alfaqih} et al., Bol. Soc. Parana. Mat. (3) 38, No. 4, 9--29 (2020; Zbl 1431.54023) Full Text: Link
Babu, G. V. R.; Babu, D. Ratna Common fixed points of rational type and Geraghty-Suzuki type contraction maps in partial metric spaces. (English) Zbl 07273210 J. Int. Math. Virtual Inst. 9, No. 2, 341-359 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. V. R. Babu} and \textit{D. R. Babu}, J. Int. Math. Virtual Inst. 9, No. 2, 341--359 (2019; Zbl 07273210) Full Text: DOI
Akkouchi, Mohamed A common fixed point result for two pairs of weakly tangential maps in B-metric spaces. (English) Zbl 07273195 J. Int. Math. Virtual Inst. 9, No. 1, 189-204 (2019). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{M. Akkouchi}, J. Int. Math. Virtual Inst. 9, No. 1, 189--204 (2019; Zbl 07273195) Full Text: DOI
Razavi, S. S.; Masiha, H. P. Common fixed point theorems in C*-algebra-valued b-metric spaces with applications to integral equations. (English) Zbl 1444.54036 Fixed Point Theory 20, No. 2, 649-662 (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. S. Razavi} and \textit{H. P. Masiha}, Fixed Point Theory 20, No. 2, 649--662 (2019; Zbl 1444.54036) Full Text: Link
Neog, Murchana; Debnath, Pradip; Radenović, Stojan New extension of some common fixed point theorems in complete metric spaces. (English) Zbl 07262288 Fixed Point Theory 20, No. 2, 567-580 (2019). MSC: 47H10 54H25 54E50 PDF BibTeX XML Cite \textit{M. Neog} et al., Fixed Point Theory 20, No. 2, 567--580 (2019; Zbl 07262288) Full Text: Link
Das, Krishnapada Common fixed point results for non-compatible \(R\)-weakly commuting mappings in probabilistic semimetric spaces using control functions. (English) Zbl 07139824 Korean J. Math. 27, No. 3, 629-643 (2019). MSC: 47H10 54H25 54E70 PDF BibTeX XML Cite \textit{K. Das}, Korean J. Math. 27, No. 3, 629--643 (2019; Zbl 07139824) Full Text: DOI
Piao, Yongjie Coincidence points and common fixed points for mappings with \(\phi \)-contractive conditions on metric spaces. (Chinese. English summary) Zbl 1449.54092 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 2, 235-243 (2019). MSC: 54H25 54E40 54C60 PDF BibTeX XML Cite \textit{Y. Piao}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 2, 235--243 (2019; Zbl 1449.54092)
Bhutia, Jigmi Dorjee; Tiwary, Kalishankar Common fixed point theorems in metric space using new CLR property. (English) Zbl 1449.54053 J. Adv. Stud. Topol. 10, No. 1, 68-77 (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{J. D. Bhutia} and \textit{K. Tiwary}, J. Adv. Stud. Topol. 10, No. 1, 68--77 (2019; Zbl 1449.54053) Full Text: DOI
Hammad, Hasanen A.; La Sen, Manuel De Fixed point results for \(\phi\)-\((\gamma,\eta, n, m)\)-contractions with applications to nonlinear integral equations. (English) Zbl 1449.54062 Int. J. Anal. Appl. 17, No. 3, 448-463 (2019). MSC: 54H25 54E40 45G10 PDF BibTeX XML Cite \textit{H. A. Hammad} and \textit{M. De La Sen}, Int. J. Anal. Appl. 17, No. 3, 448--463 (2019; Zbl 1449.54062) Full Text: Link
Sharma, Varsha Common fixed point theorem in intuitionistic fuzzy metric space using (CLRg) property. (English) Zbl 1411.54017 Electron. J. Math. Analysis Appl. 7, No. 2, 122-131 (2019). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 47H10 54A40 PDF BibTeX XML Cite \textit{V. Sharma}, Electron. J. Math. Analysis Appl. 7, No. 2, 122--131 (2019; Zbl 1411.54017) Full Text: Link
Singh, Deepak; Sharma, Mayank; Sharma, Ramakant; Singh, Naval Common fixed point theorems in fuzzy metric spaces under implicit relations. (English) Zbl 1441.54039 Thai J. Math. 16, No. 2, 347-358 (2018). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{D. Singh} et al., Thai J. Math. 16, No. 2, 347--358 (2018; Zbl 1441.54039) Full Text: Link
Mustafa, Zead; Jaradat, M. M. M.; Ansari, Arslan; Gu, Feng; Zheng, Hui-hui; Radenović, Stojan; Bataineh, M. S. Common fixed point theorems for two pairs of self-mappings in partial metric space using \(C\)-class functions on \((\psi,\varphi)\)-contractive condition. (English) Zbl 1427.54057 J. Math. Comput. Sci., JMCS 18, No. 2, 216-231 (2018). MSC: 54H25 47H10 54E40 PDF BibTeX XML Cite \textit{Z. Mustafa} et al., J. Math. Comput. Sci., JMCS 18, No. 2, 216--231 (2018; Zbl 1427.54057) Full Text: DOI
Jiang, Yun; Gu, Feng Common fixed point theorem in multiplicative metric spaces. (Chinese. English summary) Zbl 1449.54068 J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 6, 631-636 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 6, 631--636 (2018; Zbl 1449.54068) Full Text: DOI
Tomar, Anita; Sharma, Ritu; Upadhyay, Shivangi; Beloul, Said Common fixed point theorems in \(GP\)-metric space and applications. (English) Zbl 1449.54102 Bull. Int. Math. Virtual Inst. 8, No. 3, 561-574 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Tomar} et al., Bull. Int. Math. Virtual Inst. 8, No. 3, 561--574 (2018; Zbl 1449.54102) Full Text: DOI
Beloul, Said; Ansari, Arslan Hojet C-class function on some common fixed point theorems for weakly subsequentially continuous mappings in Menger spaces. (C-class function on some common fixed point theorems for weakly subsequentially continuous mappings in manager spaces.) (English) Zbl 1449.54051 Bull. Int. Math. Virtual Inst. 8, No. 2, 345-355 (2018). MSC: 54H25 54E40 54E70 PDF BibTeX XML Cite \textit{S. Beloul} and \textit{A. H. Ansari}, Bull. Int. Math. Virtual Inst. 8, No. 2, 345--355 (2018; Zbl 1449.54051) Full Text: DOI
Alfaqih, Waleed M.; Imdad, Mohammad; Gubran, Rqeeb Approaching simultaneous Fredholm integral equations using common fixed point theorems in complex valued metric spaces. (English) Zbl 1449.54047 Bull. Int. Math. Virtual Inst. 8, No. 2, 287-299 (2018). MSC: 54H25 54E40 45B05 PDF BibTeX XML Cite \textit{W. M. Alfaqih} et al., Bull. Int. Math. Virtual Inst. 8, No. 2, 287--299 (2018; Zbl 1449.54047) Full Text: DOI
Rashwan, R. A.; Hammad, H. A. A common fixed point theorem for a pair of self mappings satisfying a general contractive condition of exponential type. (English) Zbl 1418.54027 JP J. Fixed Point Theory Appl. 13, No. 2, 125-136 (2018). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{R. A. Rashwan} and \textit{H. A. Hammad}, JP J. Fixed Point Theory Appl. 13, No. 2, 125--136 (2018; Zbl 1418.54027) Full Text: DOI
Xu, Zhipeng; Gu, Feng Common fixed point theorems for third power type contractive mappings satisfying common \((E. A)\) property in \(G\)-metric spaces. (Chinese. English summary) Zbl 1438.54166 J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 5, 526-533 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Z. Xu} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 17, No. 5, 526--533 (2018; Zbl 1438.54166) Full Text: DOI
Kessy, Johnson; Kumar, Santosh; Kakiko, Grayson Common fixed point theorem for weakly compatible mappings in partial metric spaces. (English) Zbl 1414.54019 Nonlinear Anal. Forum 23, No. 2, 1-14 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{J. Kessy} et al., Nonlinear Anal. Forum 23, No. 2, 1--14 (2018; Zbl 1414.54019)
Sharma, Rajinder; Thakur, Deepti Common fixed point of weakly compatible maps without continuity in Menger spaces. (English) Zbl 1402.54044 J. Fuzzy Math. 26, No. 1, 1-10 (2018). MSC: 54H25 54E70 PDF BibTeX XML Cite \textit{R. Sharma} and \textit{D. Thakur}, J. Fuzzy Math. 26, No. 1, 1--10 (2018; Zbl 1402.54044)
Piao, Yongjie; Geng, Shengjie; Lang, Yingzhen Unique common fixed points for \(\mathscr{A}\)-contractive mappings on \(b\)-\(D\)-metric spaces. (Chinese. English summary) Zbl 1413.54160 J. Nat. Sci. Heilongjiang Univ. 35, No. 1, 10-14 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Piao} et al., J. Nat. Sci. Heilongjiang Univ. 35, No. 1, 10--14 (2018; Zbl 1413.54160) Full Text: DOI
Bouhadjera, Hakima A unique common fixed point for an infinity of set-valued maps. (English) Zbl 06946308 Ann. Math. Sil. 32, 79-97 (2018). MSC: 47H10 37C25 54H25 55M20 PDF BibTeX XML Cite \textit{H. Bouhadjera}, Ann. Math. Sil. 32, 79--97 (2018; Zbl 06946308) Full Text: DOI
Zada, Mian Bahadur; Sarwar, Muhammad; Tunc, Cemil Fixed point theorems in \(b\)-metric spaces and their applications to non-linear fractional differential and integral equations. (English) Zbl 06858717 J. Fixed Point Theory Appl. 20, No. 1, Paper No. 25, 19 p. (2018). MSC: 47H09 54H25 PDF BibTeX XML Cite \textit{M. B. Zada} et al., J. Fixed Point Theory Appl. 20, No. 1, Paper No. 25, 19 p. (2018; Zbl 06858717) Full Text: DOI
Moeini, Bahman; Ansari, Arsalan Hojat; Park, Choonkil \(\mathcal {JHR}\)-operator pairs in \(C^{*}\)-algebra-valued modular metric spaces and related fixed point results via \(C_{*}\)-class functions. (English) Zbl 06858709 J. Fixed Point Theory Appl. 20, No. 1, Paper No. 17, 23 p. (2018). MSC: 47H10 46L07 46A80 PDF BibTeX XML Cite \textit{B. Moeini} et al., J. Fixed Point Theory Appl. 20, No. 1, Paper No. 17, 23 p. (2018; Zbl 06858709) Full Text: DOI
Al-Muhiameed, Zeid I.; Mostefaoui, Z.; Bousselsal, M. Coincidence and common fixed point theorems for \((\psi,\varphi)\)-weakly contractive mappings in rectangular b-metric spaces. (English) Zbl 1395.54035 Electron. J. Math. Analysis Appl. 6, No. 2, 211-220 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Z. I. Al-Muhiameed} et al., Electron. J. Math. Analysis Appl. 6, No. 2, 211--220 (2018; Zbl 1395.54035) Full Text: Link
Babu, Gutti Venkata Ravindranadh; Negash, Alemayehu Geremew Existence of common fixed points for weakly compatible and \(C_q\)-commuting maps and invariant approximations. (English) Zbl 07245895 Thai J. Math. 15, No. 3, 761-776 (2017). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{G. V. R. Babu} and \textit{A. G. Negash}, Thai J. Math. 15, No. 3, 761--776 (2017; Zbl 07245895) Full Text: Link
Deepmala; Jain, Manish; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan A note on the paper “Common coupled fixed point theorems for weakly compatible mappings in fuzzy metric spaces”. (English) Zbl 1427.54046 Int. J. Adv. Appl. Math. Mech. 5, No. 2, 51-52 (2017). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{Deepmala} et al., Int. J. Adv. Appl. Math. Mech. 5, No. 2, 51--52 (2017; Zbl 1427.54046) Full Text: Link
Shams, M.; Shayanpour, H.; Ehsanzadeh, F. Some fixed point results in dislocated probability Menger metric spaces. (English) Zbl 1438.54160 Bol. Soc. Parana. Mat. (3) 35, No. 2, 69-81 (2017). MSC: 54H25 54E70 54E40 PDF BibTeX XML Cite \textit{M. Shams} et al., Bol. Soc. Parana. Mat. (3) 35, No. 2, 69--81 (2017; Zbl 1438.54160) Full Text: Link
Gupta, Vishal; Kumar, Saini Rajesh; Kanwar, Ashima Some coupled fixed point results on modified intuitionistic fuzzy metric spaces and application to integral type contraction. (English) Zbl 1398.54070 Iran. J. Fuzzy Syst. 14, No. 5, 123-137 (2017). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{V. Gupta} et al., Iran. J. Fuzzy Syst. 14, No. 5, 123--137 (2017; Zbl 1398.54070) Full Text: DOI
Bairagi, Vishnu; Badshah, V. H.; Pariya, Aklesh Common fixed point theorems for weakly compatible mappings in dislocated metric space. (English) Zbl 1445.47038 J. Ramanujan Soc. Math. Math. Sci. 6, No. 1, 97-106 (2017). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. Bairagi} et al., J. Ramanujan Soc. Math. Math. Sci. 6, No. 1, 97--106 (2017; Zbl 1445.47038) Full Text: Link
Kaya, Meltem; Furkan, Hasan Fixed point theorems for expansive mappings in \(G_p\)-metric spaces. (English) Zbl 1413.54131 Creat. Math. Inform. 26, No. 3, 297-308 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Kaya} and \textit{H. Furkan}, Creat. Math. Inform. 26, No. 3, 297--308 (2017; Zbl 1413.54131)
Hashim, Amal M.; Singh, S. L. New fixed point theorems for weak\(^*\) compatible maps in rectangular metric spaces. (English) Zbl 1391.54030 Jñānābha 47, No. 1, 51-62 (2017). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{A. M. Hashim} and \textit{S. L. Singh}, Jñānābha 47, No. 1, 51--62 (2017; Zbl 1391.54030)
Cho, Yeol Je Survey on metric fixed point theory and applications. (English) Zbl 1383.54041 Ruzhansky, Michael (ed.) et al., Advances in real and complex analysis with applications. Selected papers based on the presentations at the 24th international conference on finite or infinite dimensional complex analysis and applications, 24ICFIDCAA, Jaipur, India, August 22–26, 2016. Singapore: Birkhäuser/Springer (ISBN 978-981-10-4336-9/hbk; 978-981-10-4337-6/ebook). Trends in Mathematics, 183-241 (2017). MSC: 54H25 54E40 54-02 PDF BibTeX XML Cite \textit{Y. J. Cho}, in: Advances in real and complex analysis with applications. Selected papers based on the presentations at the 24th international conference on finite or infinite dimensional complex analysis and applications, 24ICFIDCAA, Jaipur, India, August 22--26, 2016. Singapore: Birkhäuser/Springer. 183--241 (2017; Zbl 1383.54041) Full Text: DOI
Jha, Kanhaiya; Pant, Vyomesh Some common fixed point theorems in fuzzy metric space with property (E.A.). (English) Zbl 1384.54027 Thai J. Math. 15, No. 1, 217-226 (2017). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{K. Jha} and \textit{V. Pant}, Thai J. Math. 15, No. 1, 217--226 (2017; Zbl 1384.54027) Full Text: Link
Bouhadjera, Hakima New properties under generalized contractive conditions. (English) Zbl 06849656 Khayyam J. Math. 3, No. 2, 185-194 (2017). MSC: 47H10 37C25 54H25 47H10 55M20 PDF BibTeX XML Cite \textit{H. Bouhadjera}, Khayyam J. Math. 3, No. 2, 185--194 (2017; Zbl 06849656) Full Text: DOI
Ansari, A. H.; Beloul, S. \(C\)-class functions on common fixed points for mappings satisfying linear contractive condition. (English) Zbl 1399.54081 Surv. Math. Appl. 12, 35-50 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. H. Ansari} and \textit{S. Beloul}, Surv. Math. Appl. 12, 35--50 (2017; Zbl 1399.54081) Full Text: EMIS
Jungck, Gerald F.; Rhoades, B. E. General fixed point results in dislocated metric spaces. (English) Zbl 1395.54047 Fixed Point Theory 18, No. 2, 615-624 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. F. Jungck} and \textit{B. E. Rhoades}, Fixed Point Theory 18, No. 2, 615--624 (2017; Zbl 1395.54047) Full Text: DOI
Xu, Zhipeng; Gu, Feng Common fixed point theorems for multiplicative expansive mappings in multiplicative metric space. (Chinese. English summary) Zbl 1389.54133 J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 3, 297-300 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Z. Xu} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 3, 297--300 (2017; Zbl 1389.54133) Full Text: DOI
Jiang, Yun; Gu, Feng Common fixed points theorems for four maps satisfying \(\phi\)-type contractive condition in multiplicative metric spaces. (Chinese. English summary) Zbl 1389.54092 Pure Appl. Math. 33, No. 2, 185-196 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{F. Gu}, Pure Appl. Math. 33, No. 2, 185--196 (2017; Zbl 1389.54092) Full Text: DOI
Bindu, V. M. L. Hima; Kishore, G. N. V.; Rao, K. P. R.; Phani, Y. Suzuki type unique common fixed point theorem in partial metric spaces using (C)-condition. (English) Zbl 1373.54050 Math. Sci., Springer 11, No. 1, 39-45 (2017). MSC: 54H25 47H10 54E50 PDF BibTeX XML Cite \textit{V. M. L. H. Bindu} et al., Math. Sci., Springer 11, No. 1, 39--45 (2017; Zbl 1373.54050) Full Text: DOI
Kishore, G. N. V.; Rao, K. P. R.; Bindu, V. M. L. Hima Suzuki type unique common fixed point theorem in partial metric spaces by using (C): condition with rational expressions. (English) Zbl 1373.54058 Afr. Mat. 28, No. 5-6, 793-803 (2017). MSC: 54H25 47H10 54E50 PDF BibTeX XML Cite \textit{G. N. V. Kishore} et al., Afr. Mat. 28, No. 5--6, 793--803 (2017; Zbl 1373.54058) Full Text: DOI
Beloul, Said; Ansari, Arslan Hojat Common fixed points for weakly subsequentially continuous mappings via new function. (English) Zbl 1369.54031 J. Adv. Math. Stud. 10, No. 1, 62-73 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Beloul} and \textit{A. H. Ansari}, J. Adv. Math. Stud. 10, No. 1, 62--73 (2017; Zbl 1369.54031)
Li, Hedong; Lu, Jing; Gu, Feng The common fixed point theorem for families of weakly compatible maps in \(b\)-metric space. (Chinese. English summary) Zbl 1374.54052 J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 1, 86-93 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Li} et al., J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 1, 86--93 (2017; Zbl 1374.54052) Full Text: DOI
Ali, A. Mohamed \(N\)-intuitionistic fuzzy metric spaces and various types of mappings. (English) Zbl 1368.54018 Ann. Fuzzy Math. Inform. 13, No. 2, 277-287 (2017). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{A. M. Ali}, Ann. Fuzzy Math. Inform. 13, No. 2, 277--287 (2017; Zbl 1368.54018) Full Text: Link
Auwalu, Abba; Hınçal, Evren Common fixed point theorems for three maps in cone pentagonal metric spaces. (English) Zbl 1368.54019 Eur. J. Pure Appl. Math. 10, No. 3, 473-487 (2017). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Auwalu} and \textit{E. Hınçal}, Eur. J. Pure Appl. Math. 10, No. 3, 473--487 (2017; Zbl 1368.54019) Full Text: Link
Bahadur Zada, Mian; Sarwar, Muhammad; Radenović, Stojan Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces. (English) Zbl 06679992 J. Inequal. Appl. 2017, Paper No. 22, 12 p. (2017). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Bahadur Zada} et al., J. Inequal. Appl. 2017, Paper No. 22, 12 p. (2017; Zbl 06679992) Full Text: DOI
Nazir, Talat; Silvestrov, Sergei; Abbas, Mujahid Common fixed point results of four mappings in ordered partial metric spaces. (English) Zbl 1431.54034 Waves Wavelets Fractals, Adv. Anal. 2, 46-63 (2016). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{T. Nazir} et al., Waves Wavelets Fractals, Adv. Anal. 2, 46--63 (2016; Zbl 1431.54034) Full Text: DOI
Patriciu, Alina-Mihaela; Popa, Valeriu A general fixed point theorem in complete \(G\)-metric spaces for weakly compatible pairs satisfying a \(\phi\)-implicit relation. (English) Zbl 1399.54139 Sci. Stud. Res., Ser. Math. Inform. 26, No. 1, 55-64 (2016). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{A.-M. Patriciu} and \textit{V. Popa}, Sci. Stud. Res., Ser. Math. Inform. 26, No. 1, 55--64 (2016; Zbl 1399.54139)
Kumam, Poom; Kumar, Manoj; Araci, Serkan Fixed point theorems for soft weakly compatible mappings in soft \(G\)-metric spaces. (English) Zbl 1394.54025 Adv. Appl. Math. Sci. 15, No. 7, 215-228 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{P. Kumam} et al., Adv. Appl. Math. Sci. 15, No. 7, 215--228 (2016; Zbl 1394.54025)
Tomar, A.; Giniswamy; Jeyanthi, C.; Maheshwari, P. G. Coincidence and common fixed point of \(F\)-contractions via CLR\(_{ST}\) property. (English) Zbl 1399.54164 Surv. Math. Appl. 11, 21-31 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Tomar} et al., Surv. Math. Appl. 11, 21--31 (2016; Zbl 1399.54164) Full Text: EMIS
Deshpande, Bhavana; Handa, Amrish Tripled coincidence and common tripled fixed point theorem for hybrid pair of mappings satisfying new contractive condition. (English) Zbl 1371.54173 East Asian Math. J. 32, No. 5, 701-716 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{B. Deshpande} and \textit{A. Handa}, East Asian Math. J. 32, No. 5, 701--716 (2016; Zbl 1371.54173) Full Text: DOI
Kumar, Manoj; Kumar, Pankaj; Kumar, Sanjay; Araci, Serkan Weakly compatible maps in complex valued metric spaces and an application to solve Urysohn integral equation. (English) Zbl 06749915 Filomat 30, No. 10, 2695-2709 (2016). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Kumar} et al., Filomat 30, No. 10, 2695--2709 (2016; Zbl 06749915) Full Text: DOI
Han, Yinhuan; Piao, Yongjie Improvements of coincidence point and common fixed point theorems for mappings on 2-metric spaces. (Chinese. English summary) Zbl 1374.54048 J. Syst. Sci. Math. Sci. 36, No. 10, 1771-1778 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Han} and \textit{Y. Piao}, J. Syst. Sci. Math. Sci. 36, No. 10, 1771--1778 (2016; Zbl 1374.54048)
Tomar, Anita; Giniswamy; Jeyanthi, C.; Maheshwari, P. G. On coincidence and common fixed point of six maps satisfying F-contractions. (English) Zbl 06739937 TWMS J. Appl. Eng. Math. 6, No. 2, 224-231 (2016). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. Tomar} et al., TWMS J. Appl. Eng. Math. 6, No. 2, 224--231 (2016; Zbl 06739937)
Jain, Manish; Kumar, Sanjay A common fixed point theorem in fuzzy metric space using the property (CLRg). (English) Zbl 1369.54040 Thai J. Math. 14, No. 3, 627-636 (2016). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{M. Jain} and \textit{S. Kumar}, Thai J. Math. 14, No. 3, 627--636 (2016; Zbl 1369.54040) Full Text: Link
Zoto, Kastriot; Vardhami, Ilir; Dine, Jani; Isufati, Arben Common fixed points in b-dislocated metric spaces using (E.A) property. (English) Zbl 06699933 Mat. Bilt. 40, No. 1, 15-27 (2016). MSC: 47H10 55M20 PDF BibTeX XML Cite \textit{K. Zoto} et al., Mat. Bilt. 40, No. 1, 15--27 (2016; Zbl 06699933) Full Text: Link
Auwalu, Abba; Hınçal, Evren Banach-type fixed point theorem for four maps in cone pentagonal metric spaces. (English) Zbl 06689796 Far East J. Math. Sci. (FJMS) 100, No. 7, 1141-1157 (2016). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. Auwalu} and \textit{E. Hınçal}, Far East J. Math. Sci. (FJMS) 100, No. 7, 1141--1157 (2016; Zbl 06689796) Full Text: DOI Link
Eke, Kanayo Stella Common fixed point theorems for generalized contraction mappings on uniform spaces. (English) Zbl 06688515 Far East J. Math. Sci. (FJMS) 99, No. 11, 1753-1760 (2016). MSC: 47H10 PDF BibTeX XML Cite \textit{K. S. Eke}, Far East J. Math. Sci. (FJMS) 99, No. 11, 1753--1760 (2016; Zbl 06688515) Full Text: DOI Link
Goyal, A. K.; Jaiswal, Somita Some common fixed point theorems for weakly compatible mappings satisfying a general contractive condition of integral type. (English) Zbl 1358.54030 J. Rajasthan Acad. Phys. Sci. 15, No. 3, 211-220 (2016). MSC: 54H25 PDF BibTeX XML Cite \textit{A. K. Goyal} and \textit{S. Jaiswal}, J. Rajasthan Acad. Phys. Sci. 15, No. 3, 211--220 (2016; Zbl 1358.54030)
Hashim, Amal M. Fixed points of generalized weakly contractive maps in partial metric spaces. (English) Zbl 06678605 Jñānābha 46, 155-166 (2016). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. M. Hashim}, Jñānābha 46, 155--166 (2016; Zbl 06678605)
Choudhury, Binayak S.; Das, Pradyut; Saha, P. Some \(\varphi\)-contraction results using CLRg property in probabilistic and fuzzy metric spaces. (Some \(\varphi\)-contrction results using CLRg proprty in probabilistic and fuzzy metric spaces.) (English) Zbl 1353.54033 Ann. Fuzzy Math. Inform. 12, No. 3, 387-395 (2016). MSC: 54H25 54E40 54E70 54A40 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Ann. Fuzzy Math. Inform. 12, No. 3, 387--395 (2016; Zbl 1353.54033) Full Text: Link
Huang, Huaping; Xu, Shaoyuan; Liu, Qiuhua; Ming, Wei Common fixed point theorems in non-normal cone metric spaces with Banach algebras. (English) Zbl 1363.54052 Chin. Q. J. Math. 31, No. 2, 155-161 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Huang} et al., Chin. Q. J. Math. 31, No. 2, 155--161 (2016; Zbl 1363.54052) Full Text: DOI
Giniswamy; Maheshwari, P. G.; Jeyanthi, C. Fixed points on hybrid contractive conditions in partially ordered metric space. (English) Zbl 1348.54051 J. Nonlinear Convex Anal. 17, No. 6, 1137-1149 (2016). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{Giniswamy} et al., J. Nonlinear Convex Anal. 17, No. 6, 1137--1149 (2016; Zbl 1348.54051) Full Text: Link
Bisht, Ravindra K. On common fixed points of a sequence of mappings. (English) Zbl 1351.54019 Asian-Eur. J. Math. 9, No. 3, Article ID 1650060, 6 p. (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{R. K. Bisht}, Asian-Eur. J. Math. 9, No. 3, Article ID 1650060, 6 p. (2016; Zbl 1351.54019) Full Text: DOI
Yang, Zhongzhi Common fixed point for three pairs of self-maps satisfying weakly commuting and weakly compatible condition in generalized metric spaces. (English) Zbl 1353.54055 J. Nonlinear Sci. Appl. 9, No. 6, 3962-3979 (2016). MSC: 54H25 54E50 54E40 PDF BibTeX XML Cite \textit{Z. Yang}, J. Nonlinear Sci. Appl. 9, No. 6, 3962--3979 (2016; Zbl 1353.54055) Full Text: DOI Link
Ansari, Arslan Hojat; Chandok, Sumit; Hussain, Nawab; Paunović, Ljiljana Fixed points of \((\psi, \phi)\)-weak contractions in regular cone metric spaces via new function. (English) Zbl 1353.54029 J. Adv. Math. Stud. 9, No. 1, 72-82 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. H. Ansari} et al., J. Adv. Math. Stud. 9, No. 1, 72--82 (2016; Zbl 1353.54029)
Huang, Huaping; Hu, Songlin; Popović, Branislav Z.; Radenović, Stojan Common fixed point theorems for four mappings on cone \(b\)-metric spaces over Banach algebras. (English) Zbl 1442.54038 J. Nonlinear Sci. Appl. 9, No. 6, 3655-3671 (2016). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Huang} et al., J. Nonlinear Sci. Appl. 9, No. 6, 3655--3671 (2016; Zbl 1442.54038) Full Text: DOI Link
Bhardwaj, Vinod K.; Gupta, Vishal; Deep, Raman Some fixed point results for \(A\)-contractions in 2-metric spaces and their applications. (English) Zbl 1349.54087 Miskolc Math. Notes 16, No. 2, 679-694 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{V. K. Bhardwaj} et al., Miskolc Math. Notes 16, No. 2, 679--694 (2016; Zbl 1349.54087) Full Text: DOI
Abbas, Mujahid; Ali, Bashir; Suleiman, Yusuf I. Unification of several distance functions and a common fixed point result. (English) Zbl 1347.54057 Fixed Point Theory Appl. 2016, Paper No. 6, 14 p. (2016). MSC: 54H25 54E35 54E40 PDF BibTeX XML Cite \textit{M. Abbas} et al., Fixed Point Theory Appl. 2016, Paper No. 6, 14 p. (2016; Zbl 1347.54057) Full Text: DOI
Kumari, Panda Sumati; Panthi, Dinesh Cyclic compatible contraction and related fixed point theorems. (English) Zbl 1338.54186 Fixed Point Theory Appl. 2016, Paper No. 28, 18 p. (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{P. S. Kumari} and \textit{D. Panthi}, Fixed Point Theory Appl. 2016, Paper No. 28, 18 p. (2016; Zbl 1338.54186) Full Text: DOI
Hussain, Nawab; Isik, Huseyin; Abbas, Mujahid Common fixed point results of generalized almost rational contraction mappings with an application. (English) Zbl 1338.54171 J. Nonlinear Sci. Appl. 9, No. 5, 2273-2288 (2016). MSC: 54H25 54E40 39B52 PDF BibTeX XML Cite \textit{N. Hussain} et al., J. Nonlinear Sci. Appl. 9, No. 5, 2273--2288 (2016; Zbl 1338.54171) Full Text: DOI Link
Zheng, Hui Hui; Gu, Feng Some results of common fixed point for four self-maps satisfying a new \(\Psi\)-contractive condition in partial metric spaces. (English) Zbl 1338.54238 J. Nonlinear Sci. Appl. 9, No. 5, 2258-2272 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. H. Zheng} and \textit{F. Gu}, J. Nonlinear Sci. Appl. 9, No. 5, 2258--2272 (2016; Zbl 1338.54238) Full Text: DOI Link
Hussain, Nawab; Kutbi, Marwan A.; Sultana, Nazra; Iqbal, Iram Weak contractive integral inequalities and fixed points in modular metric spaces. (English) Zbl 1338.54172 J. Inequal. Appl. 2016, Paper No. 89, 20 p. (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{N. Hussain} et al., J. Inequal. Appl. 2016, Paper No. 89, 20 p. (2016; Zbl 1338.54172) Full Text: DOI
Wang, Shuang Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces using the CLRg property. (English) Zbl 1330.54073 J. Nonlinear Sci. Appl. 9, No. 3, 1043-1051 (2016). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Wang}, J. Nonlinear Sci. Appl. 9, No. 3, 1043--1051 (2016; Zbl 1330.54073) Full Text: DOI Link
Mu, Xiaohuan; Zhu, Chuanxi; Wu, Zhaoqi Common fixed point theorems for compatible and weakly compatible maps in Menger probabilistic \(G\)-metric spaces. (English) Zbl 1330.54063 J. Nonlinear Sci. Appl. 9, No. 3, 920-932 (2016). MSC: 54H25 54E70 PDF BibTeX XML Cite \textit{X. Mu} et al., J. Nonlinear Sci. Appl. 9, No. 3, 920--932 (2016; Zbl 1330.54063) Full Text: DOI Link
Abdou, Afrah Ahmad Noan Common fixed point results for multi-valued mappings with some examples. (English) Zbl 1437.54034 J. Nonlinear Sci. Appl. 9, No. 3, 787-798 (2016). MSC: 54H25 54E40 54C60 PDF BibTeX XML Cite \textit{A. A. N. Abdou}, J. Nonlinear Sci. Appl. 9, No. 3, 787--798 (2016; Zbl 1437.54034) Full Text: DOI Link
Moosaei, Mohammad On coincidence points of generalized contractive pair mappings in convex metric spaces. (English) Zbl 1416.54023 J. Hyperstruct. 4, No. 2, 136-141 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Moosaei}, J. Hyperstruct. 4, No. 2, 136--141 (2015; Zbl 1416.54023) Full Text: Link
Abbas, Mujahid; De la Sen, Manuel; Nazir, Talat Common fixed points of generalized cocyclic mappings in complex valued metric spaces. (English) Zbl 1418.54020 Discrete Dyn. Nat. Soc. 2015, Article ID 147303, 11 p. (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Abbas} et al., Discrete Dyn. Nat. Soc. 2015, Article ID 147303, 11 p. (2015; Zbl 1418.54020) Full Text: DOI
Deshpande, Bhavana; Handa, Amrish Common coupled fixed point theorems for weakly compatible mapping under \(\phi\)-contractive condition on intuitionistic fuzzy metric spaces with application. (English) Zbl 1371.54169 J. Fuzzy Math. 23, No. 4, 875-893 (2015). MSC: 54H25 54A40 54E40 45B05 PDF BibTeX XML Cite \textit{B. Deshpande} and \textit{A. Handa}, J. Fuzzy Math. 23, No. 4, 875--893 (2015; Zbl 1371.54169)
Singadurai, A.; Pushpalakshmi, G. Some fixed point theorems on generalized \({\mathcal M}\)-fuzzy metric space. (English) Zbl 1371.54189 J. Fuzzy Math. 23, No. 1, 131-139 (2015). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{A. Singadurai} and \textit{G. Pushpalakshmi}, J. Fuzzy Math. 23, No. 1, 131--139 (2015; Zbl 1371.54189)
Bisht, R. K.; Jain, M.; Kumar, S. Erratum to: Common fixed point theorems for expansion mappings in various spaces. (English) Zbl 1374.54042 Acta Math. Hung. 146, No. 1, 261-264 (2015). MSC: 54H25 54A40 54E40 54E70 PDF BibTeX XML Cite \textit{R. K. Bisht} et al., Acta Math. Hung. 146, No. 1, 261--264 (2015; Zbl 1374.54042) Full Text: DOI
Sharma, R. K.; Jain, Anupam; Jain, Rajnish Some common fixed point theorems of mappings satisfying an implicit relation. (English) Zbl 06651203 J. Indian Acad. Math. 37, No. 2, 325-338 (2015). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{R. K. Sharma} et al., J. Indian Acad. Math. 37, No. 2, 325--338 (2015; Zbl 06651203)
Sintunavarat, Wutiphol; Manro, Saurabh; Kumam, Poom Common fixed point theorems in intuitionistic fuzzy metric spaces using concept of occasionally weakly compatible self mappings. (English) Zbl 1350.54037 Chiang Mai J. Sci. 42, No. 2, 512-522 (2015). MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{W. Sintunavarat} et al., Chiang Mai J. Sci. 42, No. 2, 512--522 (2015; Zbl 1350.54037)
Song, Jiping; Liu, Yun Some common fixed point theorems for mappings on cone b-metric spaces. (English) Zbl 1349.54143 J. Math., Wuhan Univ. 35, No. 5, 1053-1067 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{J. Song} and \textit{Y. Liu}, J. Math., Wuhan Univ. 35, No. 5, 1053--1067 (2015; Zbl 1349.54143)
Wang, Shuang On \(\phi\)-contractions in partially ordered fuzzy metric spaces. (English) Zbl 1429.54061 Fixed Point Theory Appl. 2015, Paper No. 233, 16 p (2015). MSC: 54H25 54A40 54E40 54F05 PDF BibTeX XML Cite \textit{S. Wang}, Fixed Point Theory Appl. 2015, Paper No. 233, 16 p (2015; Zbl 1429.54061) Full Text: DOI
Sarwar, Muhammad; Zada, Mian Bahadur; Erhan, İnci M. Common fixed point theorems of integral type contraction on metric spaces and its applications to system of functional equations. (English) Zbl 1429.54057 Fixed Point Theory Appl. 2015, Paper No. 217, 15 p. (2015). MSC: 54H25 54E40 39B52 90C39 PDF BibTeX XML Cite \textit{M. Sarwar} et al., Fixed Point Theory Appl. 2015, Paper No. 217, 15 p. (2015; Zbl 1429.54057) Full Text: DOI
Gu, Feng; Cho, Yeol Je Common fixed point results for four maps satisfying \(\phi\)-contractive condition in multiplicative metric spaces. (English) Zbl 1347.54079 Fixed Point Theory Appl. 2015, Paper No. 165, 19 p. (2015). MSC: 54H25 54E50 54E40 PDF BibTeX XML Cite \textit{F. Gu} and \textit{Y. J. Cho}, Fixed Point Theory Appl. 2015, Paper No. 165, 19 p. (2015; Zbl 1347.54079) Full Text: DOI
Abdou, Afrah A. N. Common fixed point theorems for hybrid contractive pairs with the \((CLR)\)-property. (English) Zbl 06584083 Fixed Point Theory Appl. 2015, Paper No. 138, 9 p. (2015). MSC: 47H09 46B20 47H10 PDF BibTeX XML Cite \textit{A. A. N. Abdou}, Fixed Point Theory Appl. 2015, Paper No. 138, 9 p. (2015; Zbl 06584083) Full Text: DOI
Sharma, Rajinder Weak compatibility and fixed point theorem in fuzzy metric spaces using implicit relation. (English) Zbl 1335.47039 Jordan J. Math. Stat. 8, No. 4, 271-280 (2015). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{R. Sharma}, Jordan J. Math. Stat. 8, No. 4, 271--280 (2015; Zbl 1335.47039) Full Text: Link
Jain, Shishir; Jain, Shobha Some results on a cone rectangular metric space. (English) Zbl 1335.47036 Jordan J. Math. Stat. 8, No. 3, 239-255 (2015). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. Jain} and \textit{S. Jain}, Jordan J. Math. Stat. 8, No. 3, 239--255 (2015; Zbl 1335.47036) Full Text: Link
Rangamma, M.; Murthy, P. Rama Bhadra Fixed point theorem for six self-maps in cone metric spaces. (English) Zbl 1355.54054 JP J. Fixed Point Theory Appl. 10, No. 2, 45-54 (2015). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 54E50 PDF BibTeX XML Cite \textit{M. Rangamma} and \textit{P. R. B. Murthy}, JP J. Fixed Point Theory Appl. 10, No. 2, 45--54 (2015; Zbl 1355.54054) Full Text: DOI Link
Jain, Arihant; Gupta, V. K.; Sharma, Abhishek; Bamniya, Dhansingh A coupled fixed point theorem and \(t\)-norm of Hadžíc type in fuzzy metric space. (English) Zbl 1331.54051 Ital. J. Pure Appl. Math. 35, 51-60 (2015). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{A. Jain} et al., Ital. J. Pure Appl. Math. 35, 51--60 (2015; Zbl 1331.54051) Full Text: Link
Rashwan, R. A.; Hammad, H. A. Unique common fixed point theorems for six mappings under contractive conditions of integral type in \(G\)-metric spaces. (English) Zbl 1331.54062 Int. J. Funct. Anal. Oper. Theory Appl. 7, No. 1, 57-80 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{R. A. Rashwan} and \textit{H. A. Hammad}, Int. J. Funct. Anal. Oper. Theory Appl. 7, No. 1, 57--80 (2015; Zbl 1331.54062) Full Text: DOI Link
Nashine, Hemant Kumar New common fixed point results in ordered partial metric spaces. (English) Zbl 1329.54050 Bull. Allahabad Math. Soc. 30, No. 1, 39-59 (2015). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{H. K. Nashine}, Bull. Allahabad Math. Soc. 30, No. 1, 39--59 (2015; Zbl 1329.54050)