×

Induced mappings on hyperspaces \(C(p,X)\) and \(K(X)\). (English) Zbl 1386.54015

For a metric continuum \(X\) and a point \(p \in X\), consider the following hyperspaces:
\(C(X)=\{A \subset X : A\) is a subcontinuum of \(X\}\),
\(C_{p} (X) = \{A \in C(X) : p \in A\}\), and
\(K(X)=\{C_{p} (X) \in C(C(X)) : p \in X\}\).
Given a mapping between continua \(f:X \to Y\), the authors consider the following natural mappings:
– \(\overline{f} : C(X) \rightarrow C(Y)\), given by \(\overline{f} (A)=f(A)\) (the image of \(A\) under \(f\)),
– \(\tilde{f} : K(X) \rightarrow K(Y)\), given by \(\tilde{f} (C(p,X)) = C(f(p),Y)\),
– \(\Check{f} : K(X) \rightarrow C(C(Y))\) given by \(\Check{f} (C(p,X))=\overline{f}(C(p,X))\), and
– \(\overline{f}_{p} : C(p,X) \rightarrow C(f(p),Y)\) given by \(\overline{f}_{p}(A)=\overline{f}(A)\).
Now let \(\mathcal{M}\) denote a class of mappings between continua. The main problem studied in this paper is to find all interrelations betweeen the following statements:
(0) \(f \in \mathcal{M}\),
(1) \(\overline{f} \in \mathcal{M}\),
(2) \(\tilde{f} \in \mathcal{M}\),
(3) \(\Check{f} \in \mathcal{M}\), and
(4) \(\overline{f}_{p} \in \mathcal{M}\) for all \(p \in X\).
There are a number of papers and authors that have studied the respective problem for many possible hyperspaces. The authors include a very complete list of references.
In the paper under review the authors study this problem for the classes of monotone, confluent, weakly confluent, light and open mappings. They include many results on this topic and pose several interesting questions.

MSC:

54F15 Continua and generalizations
54B20 Hyperspaces in general topology
54C05 Continuous maps
54C10 Special maps on topological spaces (open, closed, perfect, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anaya, J. G.; Capulín, F.; Maya, D.; Orozco-Zitli, F., Induced mappings on symmetric products of continua, Topol. Appl., 214, 100-108 (2016) · Zbl 1360.54015
[2] Camargo, J., On the semi-open induced mappings, Topol. Proc., 32, 145-152 (2008) · Zbl 1161.54002
[3] Camargo, J., Openness of the induced map \(C_n(f)\), Bol. Mat., 16, 2, 115-123 (2009) · Zbl 1256.54032
[4] Camargo, J., Some relationships between induced mappings, Topol. Appl., 157, 2038-2047 (2010) · Zbl 1200.54004
[5] Camargo, J., Lightness of the induced maps and homeomorphism, Can. Math. Bull., 54, 4, 607-618 (2011) · Zbl 1235.54006
[6] Camargo, J., On the induced MO-mappings between arcs and simple closed curves, Mat. Enseñ. Univ., 19, 1, 1-11 (2011) · Zbl 1321.54039
[7] Charatonik, W. J., Arc approximation property and confluence of induced mappings, Rocky Mt. J. Math., 28, 1, 107-154 (1998) · Zbl 0926.54024
[8] Charatonik, W. J., Openness and monotoneity of induced mappings, Proc. Am. Math. Soc., 127, 3729-3731 (1999) · Zbl 0976.54011
[9] Charatonik, J. J., Recent results on induced mappings between hyperspaces of continua, Topol. Proc., 22, 103-122 (1997) · Zbl 0915.54007
[10] Charatonik, J. J.; Charatonik, W. J., Induced MO-mappings, Tsukuba J. Math., 23, 245-252 (1999) · Zbl 0957.54006
[11] Charatonik, J. J.; Charatonik, W. J., Lightness of induced mappings, Tsukuba J. Math., 22, 179-192 (1998) · Zbl 0939.54005
[12] Charatonik, J. J.; Charatonik, W. J., Limit properties of induced mappings, Topol. Appl., 100, 103-118 (2000) · Zbl 0994.54035
[13] Charatonik, J. J.; Charatonik, W. J.; Illanes, A., Openness of induced mappings, Topol. Appl., 67-80 (1999) · Zbl 0953.54012
[14] Charatonik, J. J.; Illanes, A.; Macías, S., Induced mappings on the hyperspaces \(C_n(X)\) of a continuum \(X\), Houst. J. Math., 28, 781-805 (2002) · Zbl 1021.54011
[15] Eberhart, C., Intervals of continua which are Hilbert cubes, Proc. Am. Math. Soc., 68, 220-224 (1978) · Zbl 0398.54019
[16] Higuera, G.; Illanes, A., Induced mappings on symmetric products, Topol. Proc., 37, 367-401 (2011) · Zbl 1282.54009
[17] Hosokawa, H., Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ., 41, 4, 1-6 (1989) · Zbl 0692.54005
[18] Hosokawa, H., Mappings of hyperspaces induced by refinable mappings, Bull. Tokyo Gakugei Univ., 42, 4, 1-8 (1990) · Zbl 0719.54008
[19] Hosokawa, H., Induced mappings between hyperspaces II, Bull. Tokyo Gakugei Univ., 44, 4, 1-7 (1992) · Zbl 0767.54005
[20] Hosokawa, H., Induced mappings on hyperspaces, Tsukuba J. Math., 21, 1, 239-259 (1997) · Zbl 0948.54016
[21] Hosokawa, H., Induced mappings on hyperspaces II, Tsukuba J. Math., 21, 773-783 (1997) · Zbl 1025.54500
[22] Illanes, A., The openness of induced mappings on hyperspaces, Colloq. Math., 74, 219-224 (1997) · Zbl 0888.54013
[23] Illanes, A.; Nadler, S. B., Hyperspaces: Fundamentals and Recent Advances, Monogr. Textb. Pure Appl. Math., vol. 216 (1999), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0933.54009
[24] de J. López, M.; Macías, S., Induced mappings on \(n\)-fold hyperspaces, Houst. J. Math., 33, 1047-1057 (2007) · Zbl 1158.54002
[25] Maćkowiak, T., Continuous mappings of continua, Diss. Math., 158, 1-91 (1979) · Zbl 0444.54021
[26] Nadler, S. B., Continuum Theory, an Introduction, Pure Appl. Math., vol. 158 (1992), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0757.54009
[27] Nadler, S. B., Hyperspaces of Sets, Monogr. Textb. Pure Appl. Math., vol. 49 (1978), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0432.54007
[28] Pellicer-Covarrubias, P., The hyperspaces \(C(p, X)\), Topol. Proc., 27, 259-285 (2003) · Zbl 1075.54008
[29] Pellicer-Covarrubias, P., The hyperspaces \(C(p, X)\) for atriodic continua, Houst. J. Math., 31, 2, 403-426 (2005) · Zbl 1085.54008
[30] Pellicer-Covarrubias, P., The hyperspaces \(K(X)\), Rocky Mt. J. Math., 35, 2, 655-674 (2005) · Zbl 1083.54005
[31] Pellicer-Covarrubias, P., Cells in hyperspaces, Topol. Appl., 154, 1002-1007 (2007) · Zbl 1116.54007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.