Geredeli, Pelin G. Bounded semigroup wellposedness for a linearized compressible flow structure PDE interaction with material derivative. (English) Zbl 07332081 SIAM J. Math. Anal. 53, No. 2, 1711-1744 (2021). MSC: 35Q 74F10 35Q35 76N10 PDF BibTeX XML Cite \textit{P. G. Geredeli}, SIAM J. Math. Anal. 53, No. 2, 1711--1744 (2021; Zbl 07332081) Full Text: DOI
Ostrowski, Lukas; Rohde, Christian Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion. (English) Zbl 1454.35296 Math. Methods Appl. Sci. 43, No. 7, 4200-4221 (2020). MSC: 35Q35 35L65 35A09 76N10 76S05 76T30 80A22 PDF BibTeX XML Cite \textit{L. Ostrowski} and \textit{C. Rohde}, Math. Methods Appl. Sci. 43, No. 7, 4200--4221 (2020; Zbl 1454.35296) Full Text: DOI
Bhauryal, Neeraj; Koley, Ujjwal; Vallet, Guy The Cauchy problem for fractional conservation laws driven by Lévy noise. (English) Zbl 1447.35349 Stochastic Processes Appl. 130, No. 9, 5310-5365 (2020). MSC: 35R11 35L65 35R60 60H15 PDF BibTeX XML Cite \textit{N. Bhauryal} et al., Stochastic Processes Appl. 130, No. 9, 5310--5365 (2020; Zbl 1447.35349) Full Text: DOI
Zheng, Xiangcheng; Wang, Hong Wellposedness and regularity of a variable-order space-time fractional diffusion equation. (English) Zbl 1442.35575 Anal. Appl., Singap. 18, No. 4, 615-638 (2020). MSC: 35S10 35K20 35R11 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, Anal. Appl., Singap. 18, No. 4, 615--638 (2020; Zbl 1442.35575) Full Text: DOI
Morgan, Jeff; Sharma, Vandana Global existence of solutions to volume-surface reaction diffusion systems with dynamic boundary conditions. (English) Zbl 07217166 Differ. Integral Equ. 33, No. 3-4, 113-138 (2020). MSC: 35K57 35B45 PDF BibTeX XML Cite \textit{J. Morgan} and \textit{V. Sharma}, Differ. Integral Equ. 33, No. 3--4, 113--138 (2020; Zbl 07217166)
Yang, Zhiwei; Zheng, Xiangcheng; Wang, Hong A variably distributed-order time-fractional diffusion equation: analysis and approximation. (English) Zbl 1442.76074 Comput. Methods Appl. Mech. Eng. 367, Article ID 113118, 15 p. (2020). MSC: 76M10 65M60 35R11 65M15 74F10 76S05 PDF BibTeX XML Cite \textit{Z. Yang} et al., Comput. Methods Appl. Mech. Eng. 367, Article ID 113118, 15 p. (2020; Zbl 1442.76074) Full Text: DOI
Zheng, Xiangcheng; Zhang, Zhongqiang; Wang, Hong Analysis of a nonlinear variable-order fractional stochastic differential equation. (English) Zbl 1441.60051 Appl. Math. Lett. 107, Article ID 106461, 6 p. (2020). MSC: 60H15 35R11 60H40 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 107, Article ID 106461, 6 p. (2020; Zbl 1441.60051) Full Text: DOI
Zheng, Xiangcheng; Wang, Hong Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations. (English) Zbl 1444.35159 Z. Angew. Math. Phys. 71, No. 1, Paper No. 34, 25 p. (2020). Reviewer: Neville Ford (Chester) MSC: 35R11 35B65 35K20 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, Z. Angew. Math. Phys. 71, No. 1, Paper No. 34, 25 p. (2020; Zbl 1444.35159) Full Text: DOI
Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine The derivative nonlinear Schrödinger equation: global well-posedness and soliton resolution. (English) Zbl 1434.35180 Q. Appl. Math. 78, No. 1, 33-73 (2020). Reviewer: Xingbin Pan (Shanghai) MSC: 35Q55 35B30 35C08 35Q41 35B40 35A01 35A02 37K15 PDF BibTeX XML Cite \textit{R. Jenkins} et al., Q. Appl. Math. 78, No. 1, 33--73 (2020; Zbl 1434.35180) Full Text: DOI
Li, Shenghao; Chen, Min; Zhang, Bingyu Wellposedness of the sixth order Boussinesq equation with non-homogeneous boundary values on a bounded domain. (English) Zbl 1448.35011 Physica D 389, 13-23 (2019). MSC: 35A02 35A01 35B30 35Q35 PDF BibTeX XML Cite \textit{S. Li} et al., Physica D 389, 13--23 (2019; Zbl 1448.35011) Full Text: DOI
Zhang, Rui; Feng, Xiangchu; Yang, Lixia; Chang, Lihong; Zhu, Xiaolong A global sparse gradient based coupled system for image denoising. (English) Zbl 1443.65026 Comput. Math. Appl. 78, No. 11, 3692-3711 (2019). MSC: 65D18 94A08 PDF BibTeX XML Cite \textit{R. Zhang} et al., Comput. Math. Appl. 78, No. 11, 3692--3711 (2019; Zbl 1443.65026) Full Text: DOI
Bu, Weiping; Shu, Shi; Yue, Xiaoqiang; Xiao, Aiguo; Zeng, Wei Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain. (English) Zbl 1442.65252 Comput. Math. Appl. 78, No. 5, 1367-1379 (2019). MSC: 65M60 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{W. Bu} et al., Comput. Math. Appl. 78, No. 5, 1367--1379 (2019; Zbl 1442.65252) Full Text: DOI
Liu, Lingyang; Gao, Hang The wellposedness and energy estimate for wave equations in domains with a space-like boundary. (English) Zbl 07174935 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 92, 19 p. (2019). MSC: 35L10 35R37 PDF BibTeX XML Cite \textit{L. Liu} and \textit{H. Gao}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 92, 19 p. (2019; Zbl 07174935) Full Text: DOI
Geng, Yongcai; Li, Yachun; Wang, Dehua; Xu, Runzhang Well-posedness of non-isentropic Euler equations with physical vacuum. (English) Zbl 1428.35326 Interfaces Free Bound. 21, No. 2, 231-266 (2019). MSC: 35Q31 35B40 76Y05 35B35 35L65 76N10 35R35 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Geng} et al., Interfaces Free Bound. 21, No. 2, 231--266 (2019; Zbl 1428.35326) Full Text: DOI arXiv
Zheng, Xiangcheng; Wang, Hong Wellposedness and regularity of a nonlinear variable-order fractional wave equation. (English) Zbl 07111308 Appl. Math. Lett. 95, 29-35 (2019). Reviewer: Neville Ford (Chester) MSC: 34A08 34C15 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, Appl. Math. Lett. 95, 29--35 (2019; Zbl 07111308) Full Text: DOI
Li, Jing; Xin, Zhouping Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum. (English) Zbl 1428.35300 Ann. PDE 5, No. 1, Paper No. 7, 37 p. (2019). MSC: 35Q30 76N10 35B40 35A09 35D35 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{J. Li} and \textit{Z. Xin}, Ann. PDE 5, No. 1, Paper No. 7, 37 p. (2019; Zbl 1428.35300) Full Text: DOI arXiv
Pattakos, N. NLS in the modulation space \(M_{2,q}({\mathbb {R}})\). (English) Zbl 1420.35372 J. Fourier Anal. Appl. 25, No. 4, 1447-1486 (2019). MSC: 35Q55 35A01 35A02 35D30 35J10 PDF BibTeX XML Cite \textit{N. Pattakos}, J. Fourier Anal. Appl. 25, No. 4, 1447--1486 (2019; Zbl 1420.35372) Full Text: DOI
Oh, Tadahiro; Okamoto, Mamoru; Pocovnicu, Oana On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. (English) Zbl 1455.35240 Discrete Contin. Dyn. Syst. 39, No. 6, 3479-3520 (2019). Reviewer: Igor I. Skrypnik (Donetsk) MSC: 35Q55 35B44 35B40 35A01 35A02 60H30 PDF BibTeX XML Cite \textit{T. Oh} et al., Discrete Contin. Dyn. Syst. 39, No. 6, 3479--3520 (2019; Zbl 1455.35240) Full Text: DOI arXiv
Lasiecka, I.; Ma, T. F.; Monteiro, R. N. Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation. (English) Zbl 07062706 Trans. Am. Math. Soc. 371, No. 11, 8051-8096 (2019). MSC: 35B41 74K20 PDF BibTeX XML Cite \textit{I. Lasiecka} et al., Trans. Am. Math. Soc. 371, No. 11, 8051--8096 (2019; Zbl 07062706) Full Text: DOI
Wang, Hong; Zheng, Xiangcheng Wellposedness and regularity of the variable-order time-fractional diffusion equations. (English) Zbl 07053183 J. Math. Anal. Appl. 475, No. 2, 1778-1802 (2019). MSC: 35 65 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Zheng}, J. Math. Anal. Appl. 475, No. 2, 1778--1802 (2019; Zbl 07053183) Full Text: DOI
Lee, Gyu Eun Local wellposedness for the critical nonlinear Schrödinger equation on \( \mathbb{T}^3 \). (English) Zbl 1412.35310 Discrete Contin. Dyn. Syst. 39, No. 5, 2763-2783 (2019). MSC: 35Q55 35B65 PDF BibTeX XML Cite \textit{G. E. Lee}, Discrete Contin. Dyn. Syst. 39, No. 5, 2763--2783 (2019; Zbl 1412.35310) Full Text: DOI
Hobus, Pascal; Saal, Jürgen Triebel-Lizorkin-Lorentz spaces and the Navier-Stokes equations. (English) Zbl 1414.42030 Z. Anal. Anwend. 38, No. 1, 41-72 (2019). Reviewer: Hans Triebel (Jena) MSC: 42B35 46E35 76D05 35Q35 PDF BibTeX XML Cite \textit{P. Hobus} and \textit{J. Saal}, Z. Anal. Anwend. 38, No. 1, 41--72 (2019; Zbl 1414.42030) Full Text: DOI arXiv
Spitz, Martin Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions. (English) Zbl 1410.35232 J. Differ. Equations 266, No. 8, 5012-5063 (2019). MSC: 35Q61 35L50 35L60 35B30 35B44 78A25 PDF BibTeX XML Cite \textit{M. Spitz}, J. Differ. Equations 266, No. 8, 5012--5063 (2019; Zbl 1410.35232) Full Text: DOI arXiv
Feola, R.; Iandoli, F. Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. (English) Zbl 1430.35207 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 1, 119-164 (2019). Reviewer: Xingbin Pan (Shanghai) MSC: 35Q55 37K55 35Q53 PDF BibTeX XML Cite \textit{R. Feola} and \textit{F. Iandoli}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 1, 119--164 (2019; Zbl 1430.35207) Full Text: DOI
Shi, Qihong; Peng, Congming Wellposedness for semirelativistic Schrödinger equation with power-type nonlinearity. (English) Zbl 1406.35370 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 133-144 (2019). MSC: 35Q55 35B65 35A01 PDF BibTeX XML Cite \textit{Q. Shi} and \textit{C. Peng}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 133--144 (2019; Zbl 1406.35370) Full Text: DOI
Bu, Shangquan; Cai, Gang Periodic solutions of second order degenerate differential equations with delay in Banach spaces. (English) Zbl 1417.34186 Can. Math. Bull. 61, No. 4, 717-737 (2018). Reviewer: Panagiotis Koumantos (Athens) MSC: 34K30 34K13 43A15 47D06 34K32 PDF BibTeX XML Cite \textit{S. Bu} and \textit{G. Cai}, Can. Math. Bull. 61, No. 4, 717--737 (2018; Zbl 1417.34186) Full Text: Link
Erdoğan, M. B.; Gürel, T. B.; Tzirakis, N. The derivative nonlinear Schrödinger equation on the half line. (English) Zbl 1405.35194 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 7, 1947-1973 (2018). MSC: 35Q55 35B65 PDF BibTeX XML Cite \textit{M. B. Erdoğan} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 7, 1947--1973 (2018; Zbl 1405.35194) Full Text: DOI
Azzam, A. Adam Scattering for the two dimensional NLS with (full) exponential nonlinearity. (English) Zbl 06923364 Commun. Pure Appl. Anal. 17, No. 3, 1071-1101 (2018). MSC: 35Q55 35P25 35B25 35A01 35A02 PDF BibTeX XML Cite \textit{A. A. Azzam}, Commun. Pure Appl. Anal. 17, No. 3, 1071--1101 (2018; Zbl 06923364) Full Text: DOI
Gao, Xinjun Global well-posedness for the cubic fractional Schrödinger equation. (English) Zbl 1397.35271 Colloq. Math. 153, No. 1, 81-96 (2018). MSC: 35Q55 35Q40 35R11 PDF BibTeX XML Cite \textit{X. Gao}, Colloq. Math. 153, No. 1, 81--96 (2018; Zbl 1397.35271) Full Text: DOI
Kwak, Minkyu; Lkhagvasuren, Bataa Global wellposedness for Hall-MHD equations. (English) Zbl 06887453 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 174, 104-117 (2018). MSC: 34 PDF BibTeX XML Cite \textit{M. Kwak} and \textit{B. Lkhagvasuren}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 174, 104--117 (2018; Zbl 06887453) Full Text: DOI
Schoeffel, Janaina; de Zarate, Ailin Ruiz; Portillo Oquendo, Higidio; Alfaro Vigo, Daniel G.; Niche, César J. Well-posedness for the regularized intermediate long-wave equation. (English) Zbl 1390.35449 Commun. Math. Sci. 16, No. 2, 523-535 (2018). MSC: 35S10 37L50 76B03 76B55 PDF BibTeX XML Cite \textit{J. Schoeffel} et al., Commun. Math. Sci. 16, No. 2, 523--535 (2018; Zbl 1390.35449) Full Text: DOI
Chen, Qionglei; Yu, Huan On the inviscid limit of the 2D magnetohydrodynamic system with vorticity in Yudovich-type space. (English) Zbl 1382.35209 Dyn. Partial Differ. Equ. 15, No. 1, 61-80 (2018). MSC: 35Q35 35B35 76D05 76W05 35A01 35A02 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{H. Yu}, Dyn. Partial Differ. Equ. 15, No. 1, 61--80 (2018; Zbl 1382.35209) Full Text: DOI
Wang, Hong; Yang, Danping Wellposedness of Neumann boundary-value problems of space-fractional differential equations. (English) Zbl 1439.35548 Fract. Calc. Appl. Anal. 20, No. 6, 1356-1381 (2017). MSC: 35R11 65F10 65M06 65M22 65T50 PDF BibTeX XML Cite \textit{H. Wang} and \textit{D. Yang}, Fract. Calc. Appl. Anal. 20, No. 6, 1356--1381 (2017; Zbl 1439.35548) Full Text: DOI arXiv
Xu, Daoyi Wellposedness and asymptotic behavior of neutral stochastic evolution systems. (Chinese. English summary) Zbl 1399.34226 J. Nanjing Univ. Inf. Sci. Technol., Nat. Sci. 9, No. 4, 400-405 (2017). MSC: 34K30 34K40 34K50 60H10 PDF BibTeX XML Cite \textit{D. Xu}, J. Nanjing Univ. Inf. Sci. Technol., Nat. Sci. 9, No. 4, 400--405 (2017; Zbl 1399.34226) Full Text: DOI
Zanger, Florian; Löwen, Hartmut; Saal, Jürgen Analysis of a living fluid continuum model. (English) Zbl 1384.35103 Maekawa, Yasunori (ed.) et al., Mathematics for nonlinear phenomena – analysis and computation. In honor of Yoshikazu Giga’s 60th birthday, Sapporo, Japan, August 2015. Cham: Springer (ISBN 978-3-319-66762-1/hbk; 978-3-319-66764-5/ebook). Springer Proceedings in Mathematics & Statistics 215, 285-303 (2017). MSC: 35Q35 35D30 35B35 76F02 76D05 PDF BibTeX XML Cite \textit{F. Zanger} et al., in: Mathematics for nonlinear phenomena -- analysis and computation. In honor of Yoshikazu Giga's 60th birthday, Sapporo, Japan, August 2015. Cham: Springer. 285--303 (2017; Zbl 1384.35103) Full Text: DOI
Machihara, Shuji; Ogawa, Takayoshi Global wellposedness for a one-dimensional Chern-Simons-Dirac system in \(L^p\). (English) Zbl 1379.35267 Commun. Partial Differ. Equations 42, No. 8, 1175-1198 (2017). MSC: 35Q40 35L05 35A01 PDF BibTeX XML Cite \textit{S. Machihara} and \textit{T. Ogawa}, Commun. Partial Differ. Equations 42, No. 8, 1175--1198 (2017; Zbl 1379.35267) Full Text: DOI
Erdoğan, M. Burak; Tzirakis, Nikolaos Regularity properties of the Zakharov system on the half line. (English) Zbl 1379.35292 Commun. Partial Differ. Equations 42, No. 7, 1121-1149 (2017). MSC: 35Q55 35G25 35B65 PDF BibTeX XML Cite \textit{M. B. Erdoğan} and \textit{N. Tzirakis}, Commun. Partial Differ. Equations 42, No. 7, 1121--1149 (2017; Zbl 1379.35292) Full Text: DOI
Zhao, Weiren Local wellposedness in Sobolev space for the inhomogeneous non-resistive MHD equations on general domain. (English) Zbl 1375.35338 Commun. Contemp. Math. 19, No. 6, Article ID 1650055, 28 p. (2017). MSC: 35Q30 35Q35 76W05 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{W. Zhao}, Commun. Contemp. Math. 19, No. 6, Article ID 1650055, 28 p. (2017; Zbl 1375.35338) Full Text: DOI
Yin, Zhaoyang; Zhai, Xiaoping Global solutions to the chemotaxis-Navier-Stokes equations with some large initial data. (English) Zbl 1358.35214 Discrete Contin. Dyn. Syst. 37, No. 5, 2829-2859 (2017). MSC: 35Q92 35Q30 35Q53 35A01 76D05 92C17 PDF BibTeX XML Cite \textit{Z. Yin} and \textit{X. Zhai}, Discrete Contin. Dyn. Syst. 37, No. 5, 2829--2859 (2017; Zbl 1358.35214) Full Text: DOI
Choe, Hi Jun; Lkhagvasuren, Bataa Global existence result for chemotaxis Navier-Stokes equations in the critical Besov spaces. (English) Zbl 1354.35168 J. Math. Anal. Appl. 446, No. 2, 1415-1426 (2017). MSC: 35Q92 92C17 76D05 PDF BibTeX XML Cite \textit{H. J. Choe} and \textit{B. Lkhagvasuren}, J. Math. Anal. Appl. 446, No. 2, 1415--1426 (2017; Zbl 1354.35168) Full Text: DOI
Bona, Jerry L.; Chen, Min Singular solutions of a Boussinesq system for water waves. (English) Zbl 1374.35339 J. Math. Study 49, No. 3, 205-220 (2016). MSC: 35Q53 76B15 PDF BibTeX XML Cite \textit{J. L. Bona} and \textit{M. Chen}, J. Math. Study 49, No. 3, 205--220 (2016; Zbl 1374.35339) Full Text: DOI
Carstensen, C.; Demkowicz, L.; Gopalakrishnan, J. Breaking spaces and forms for the DPG method and applications including Maxwell equations. (English) Zbl 1359.65249 Comput. Math. Appl. 72, No. 3, 494-522 (2016). MSC: 65N30 65N12 78A25 78M10 PDF BibTeX XML Cite \textit{C. Carstensen} et al., Comput. Math. Appl. 72, No. 3, 494--522 (2016; Zbl 1359.65249) Full Text: DOI
Peralta, Gilbert; Propst, Georg Nonlinear and linear hyperbolic systems with dynamic boundary conditions. (English) Zbl 1356.35129 Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 671-683 (2016). MSC: 35L50 35F61 35B35 35L60 PDF BibTeX XML Cite \textit{G. Peralta} and \textit{G. Propst}, Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 671--683 (2016; Zbl 1356.35129) Full Text: DOI
Erdoğan, M. B.; Tzirakis, N. Regularity properties of the cubic nonlinear Schrödinger equation on the half line. (English) Zbl 1351.35180 J. Funct. Anal. 271, No. 9, 2539-2568 (2016). MSC: 35Q55 35B65 PDF BibTeX XML Cite \textit{M. B. Erdoğan} and \textit{N. Tzirakis}, J. Funct. Anal. 271, No. 9, 2539--2568 (2016; Zbl 1351.35180) Full Text: DOI
Cheng, Xing; Miao, Changxing; Zhao, Lifeng Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case. (English) Zbl 1350.35180 J. Differ. Equations 261, No. 6, 2881-2934 (2016). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35L70 35B44 35P25 PDF BibTeX XML Cite \textit{X. Cheng} et al., J. Differ. Equations 261, No. 6, 2881--2934 (2016; Zbl 1350.35180) Full Text: DOI
Jao, Casey The energy-critical quantum harmonic oscillator. (English) Zbl 1342.35340 Commun. Partial Differ. Equations 41, No. 1, 79-133 (2016). MSC: 35Q55 35B33 PDF BibTeX XML Cite \textit{C. Jao}, Commun. Partial Differ. Equations 41, No. 1, 79--133 (2016; Zbl 1342.35340) Full Text: DOI arXiv
Zhai, Xiaoping Global wellposedness to the incompressible MHD equations with some large initial data. (English) Zbl 1339.35252 Differ. Equ. Appl. 8, No. 2, 225-246 (2016). MSC: 35Q35 76D03 76W05 PDF BibTeX XML Cite \textit{X. Zhai}, Differ. Equ. Appl. 8, No. 2, 225--246 (2016; Zbl 1339.35252) Full Text: DOI Link
Antipin, V. I.; Popov, S. V. On smooth solutions to the Gevrey problem for third order equations. (Russian. English summary) Zbl 1374.35230 Mat. Zamet. SVFU 22, No. 1, 3-12 (2015). MSC: 35K65 35K35 35M10 PDF BibTeX XML Cite \textit{V. I. Antipin} and \textit{S. V. Popov}, Mat. Zamet. SVFU 22, No. 1, 3--12 (2015; Zbl 1374.35230)
Jiu, Quansen; Niu, Dongjuan; Wu, Jiahong; Xu, Xiaojing; Yu, Huan The 2D magnetohydrodynamic equations with magnetic diffusion. (English) Zbl 1328.76076 Nonlinearity 28, No. 11, 3935-3955 (2015). MSC: 76W05 76D03 35Q35 PDF BibTeX XML Cite \textit{Q. Jiu} et al., Nonlinearity 28, No. 11, 3935--3955 (2015; Zbl 1328.76076) Full Text: DOI
Prasath, V. B. Surya; Urbano, José Miguel; Vorotnikov, Dmitry Analysis of adaptive forward-backward diffusion flows with applications in image processing. (English) Zbl 1328.35293 Inverse Probl. 31, No. 10, Article ID 105008, 30 p. (2015). MSC: 35R25 68U10 94A08 PDF BibTeX XML Cite \textit{V. B. S. Prasath} et al., Inverse Probl. 31, No. 10, Article ID 105008, 30 p. (2015; Zbl 1328.35293) Full Text: DOI
Burlakov, Evgenii; Zhukovskiy, Evgeny; Ponosov, Arcady; Wyller, John On wellposedness of generalized neural field equations with delay. (English) Zbl 1325.45009 J. Abstr. Differ. Equ. Appl. 6, No. 1, 51-80 (2015). MSC: 45G10 49K40 PDF BibTeX XML Cite \textit{E. Burlakov} et al., J. Abstr. Differ. Equ. Appl. 6, No. 1, 51--80 (2015; Zbl 1325.45009) Full Text: Link arXiv
Gallagher, Isabelle Some stability results on global solutions to the Navier-Stokes equations. (English) Zbl 1321.35135 Analysis, München 35, No. 3, 177-184 (2015). MSC: 35Q30 35Q35 35B65 76D03 PDF BibTeX XML Cite \textit{I. Gallagher}, Analysis, München 35, No. 3, 177--184 (2015; Zbl 1321.35135) Full Text: DOI
Herr, Sebastian; Strunk, Nils The energy-critical nonlinear Schrödinger equation on a product of spheres. (English) Zbl 1320.35321 Math. Res. Lett. 22, No. 3, 741-761 (2015). MSC: 35Q55 35R01 PDF BibTeX XML Cite \textit{S. Herr} and \textit{N. Strunk}, Math. Res. Lett. 22, No. 3, 741--761 (2015; Zbl 1320.35321) Full Text: DOI arXiv
Cavalcanti, Marcelo M.; Cavalcanti, André D. D.; Lasiecka, Irena; Wang, Xiaojun Existence and sharp decay rate estimates for a von Karman system with long memory. (English) Zbl 1326.35040 Nonlinear Anal., Real World Appl. 22, 289-306 (2015). MSC: 35B40 74K20 35R09 35L76 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., Nonlinear Anal., Real World Appl. 22, 289--306 (2015; Zbl 1326.35040) Full Text: DOI
Schlag, Wilhelm Semilinear wave equations. (English) Zbl 1373.35181 Jang, Sun Young (ed.) et al., Proceedings of the International Congress of Mathematicians (ICM 2014), Seoul, Korea, August 13–21, 2014. Vol. III: Invited lectures. Seoul: KM Kyung Moon Sa (ISBN 978-89-6105-806-3/hbk; 978-89-6105-803-2/set). 425-450 (2014). MSC: 35L05 35L52 37K40 37K45 53Z05 PDF BibTeX XML Cite \textit{W. Schlag}, in: Proceedings of the International Congress of Mathematicians (ICM 2014), Seoul, Korea, August 13--21, 2014. Vol. III: Invited lectures. Seoul: KM Kyung Moon Sa. 425--450 (2014; Zbl 1373.35181)
Duru, Kenneth; Virta, Kristoffer Stable and high order accurate difference methods for the elastic wave equation in discontinuous media. (English) Zbl 1351.74154 J. Comput. Phys. 279, 37-62 (2014). MSC: 74S20 65M06 74J20 PDF BibTeX XML Cite \textit{K. Duru} and \textit{K. Virta}, J. Comput. Phys. 279, 37--62 (2014; Zbl 1351.74154) Full Text: DOI
Doungmo Goufo, Emile Franc; Maritz, Riëtte; Munganga, Justin Some properties of the Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence. (English) Zbl 1344.92160 Adv. Difference Equ. 2014, Paper No. 278, 9 p. (2014). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo} et al., Adv. Difference Equ. 2014, Paper No. 278, 9 p. (2014; Zbl 1344.92160) Full Text: DOI
Wang, Hong; Yang, Danping; Zhu, Shengfeng Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. (English) Zbl 1320.65182 SIAM J. Numer. Anal. 52, No. 3, 1292-1310 (2014). MSC: 65N30 65N15 35R11 PDF BibTeX XML Cite \textit{H. Wang} et al., SIAM J. Numer. Anal. 52, No. 3, 1292--1310 (2014; Zbl 1320.65182) Full Text: DOI
Coquel, Frédéric; Jin, Shi; Liu, Jian-Guo; Wang, Li Well-posedness and singular limit of a semilinear hyperbolic relaxation system with a two-scale discontinuous relaxation rate. (English) Zbl 1304.35534 Arch. Ration. Mech. Anal. 214, No. 3, 1051-1084 (2014). MSC: 35Q35 35L60 35B65 PDF BibTeX XML Cite \textit{F. Coquel} et al., Arch. Ration. Mech. Anal. 214, No. 3, 1051--1084 (2014; Zbl 1304.35534) Full Text: DOI
Grünrock, Axel A remark on the modified Zakharov-Kuznetsov equation in three space dimensions. (English) Zbl 1300.35123 Math. Res. Lett. 21, No. 1, 127-131 (2014). MSC: 35Q53 37K40 42B25 35B45 26A33 PDF BibTeX XML Cite \textit{A. Grünrock}, Math. Res. Lett. 21, No. 1, 127--131 (2014; Zbl 1300.35123) Full Text: DOI arXiv
Deng, Chao; Yao, Xiaohua Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in \(\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}\). (English) Zbl 1368.76013 Discrete Contin. Dyn. Syst. 34, No. 2, 437-459 (2014). MSC: 76D03 76D05 35Q35 35B30 35R11 PDF BibTeX XML Cite \textit{C. Deng} and \textit{X. Yao}, Discrete Contin. Dyn. Syst. 34, No. 2, 437--459 (2014; Zbl 1368.76013) Full Text: DOI
Li, Dong; Xu, Xiaojing Global wellposedness of an inviscid \(2D\) Boussinesq system with nonlinear thermal diffusivity. (English) Zbl 1302.35319 Dyn. Partial Differ. Equ. 10, No. 3, 255-265 (2013). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35Q35 76B03 PDF BibTeX XML Cite \textit{D. Li} and \textit{X. Xu}, Dyn. Partial Differ. Equ. 10, No. 3, 255--265 (2013; Zbl 1302.35319) Full Text: DOI
Huang, Jingchi; Paicu, Marius; Zhang, Ping Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity. (English) Zbl 1290.35184 J. Math. Pures Appl. (9) 100, No. 6, 806-831 (2013). Reviewer: Georg V. Jaiani (Tbilisi) MSC: 35Q30 76D03 35A01 76D05 PDF BibTeX XML Cite \textit{J. Huang} et al., J. Math. Pures Appl. (9) 100, No. 6, 806--831 (2013; Zbl 1290.35184) Full Text: DOI
Degond, Pierre; Liu, Jian-Guo; Motsch, Sebastien; Panferov, Vladislav Hydrodynamic models of self-organized dynamics: derivation and existence theory. (English) Zbl 1278.35153 Methods Appl. Anal. 20, No. 2, 89-114 (2013). MSC: 35L60 35K55 82C05 82C22 82C70 92D50 PDF BibTeX XML Cite \textit{P. Degond} et al., Methods Appl. Anal. 20, No. 2, 89--114 (2013; Zbl 1278.35153) Full Text: DOI Link arXiv
Friedmann, E.; Neumann, R.; Rannacher, R. Well-posedness of a linear spatio-temporal model of the JAK2/STAT5 signaling pathway. (English) Zbl 1277.35210 Commun. Math. Anal. 15, No. 2, 76-102 (2013). MSC: 35K57 65M06 65M12 92C37 92C40 35B35 PDF BibTeX XML Cite \textit{E. Friedmann} et al., Commun. Math. Anal. 15, No. 2, 76--102 (2013; Zbl 1277.35210) Full Text: Euclid
Bu, Shangquan Well-posedness of second order degenerate differential equations in vector-valued function spaces. (English) Zbl 1277.47054 Stud. Math. 214, No. 1, 1-16 (2013). Reviewer: Oscar Blasco (Valencia) MSC: 47D06 47A10 47A50 42A45 43A15 PDF BibTeX XML Cite \textit{S. Bu}, Stud. Math. 214, No. 1, 1--16 (2013; Zbl 1277.47054) Full Text: DOI
Fang, Daoyuan; Wang, Sumei; Zhang, Ting Wellposedness for anisotropic rotating fluid equations. (English) Zbl 1265.35262 Appl. Math., Ser. B (Engl. Ed.) 27, No. 1, 9-33 (2012). MSC: 35Q35 35Q30 PDF BibTeX XML Cite \textit{D. Fang} et al., Appl. Math., Ser. B (Engl. Ed.) 27, No. 1, 9--33 (2012; Zbl 1265.35262) Full Text: DOI
Bothe, Dieter On the Maxwell-Stefan approach to multicomponent diffusion. (English) Zbl 1250.35127 Escher, Joachim (ed.) et al., Parabolic problems. The Herbert Amann Festschrift. Based on the conference on nonlinear parabolic problems held in celebration of Herbert Amann’s 70th birthday at the Banach Center in Bȩdlewo, Poland, May 10–16, 2009. Basel: Birkhäuser (ISBN 978-3-0348-0074-7/hbk; 978-3-0348-0075-4/ebook). Progress in Nonlinear Differential Equations and Their Applications 80, 81-93 (2011). MSC: 35K59 35Q35 76R50 76T30 92E20 35K51 PDF BibTeX XML Cite \textit{D. Bothe}, Prog. Nonlinear Differ. Equ. Appl. 80, 81--93 (2011; Zbl 1250.35127) Full Text: DOI arXiv
Jeong, Jin-Mun; Ju, Eun-Young; Cheon, Su-Jin Regularity for nonlinear variational inequalities of hyperbolic type. (English) Zbl 1236.35095 Comput. Math. Appl. 62, No. 11, 4230-4237 (2011). MSC: 35L86 35B30 49N60 PDF BibTeX XML Cite \textit{J.-M. Jeong} et al., Comput. Math. Appl. 62, No. 11, 4230--4237 (2011; Zbl 1236.35095) Full Text: DOI
Clarke, Ted; Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Romanelli, Silvia The Wentzell telegraph equation: asymptotics and continuous dependence on the boundary conditions. (English) Zbl 1239.35099 Commun. Appl. Anal. 15, No. 2-4, 313-324 (2011). Reviewer: Georg Hebermehl (Berlin) MSC: 35L90 35B40 35B30 35K90 34G10 47D06 PDF BibTeX XML Cite \textit{T. Clarke} et al., Commun. Appl. Anal. 15, No. 2--4, 313--324 (2011; Zbl 1239.35099)
Campos, Juvitsa; Duque, Omar; Rodríguez-Blanco, Guillermo The Cauchy problem associated with a bidimensional Kuramoto-Sivashinsky type equation in the periodical setting. (Spanish. English summary) Zbl 1298.35105 Rev. Colomb. Mat. 45, No. 1, 1-17 (2011). Reviewer: Oscar J. Garay (Bilbao) MSC: 35K30 35B30 35B45 PDF BibTeX XML Cite \textit{J. Campos} et al., Rev. Colomb. Mat. 45, No. 1, 1--17 (2011; Zbl 1298.35105) Full Text: EMIS
Xue, Liutang Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations. (English) Zbl 1222.76027 Math. Methods Appl. Sci. 34, No. 14, 1760-1777 (2011). MSC: 76D03 76D09 35Q35 PDF BibTeX XML Cite \textit{L. Xue}, Math. Methods Appl. Sci. 34, No. 14, 1760--1777 (2011; Zbl 1222.76027) Full Text: DOI
Chueshov, Igor; Lasiecka, Irena On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity. (English) Zbl 1217.35034 Commun. Partial Differ. Equations 36, No. 1-3, 67-99 (2011). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35B41 37L30 35Q35 PDF BibTeX XML Cite \textit{I. Chueshov} and \textit{I. Lasiecka}, Commun. Partial Differ. Equations 36, No. 1--3, 67--99 (2011; Zbl 1217.35034) Full Text: DOI
Blokhin, A. M.; Anufriev, I. A. Wellposedness of a linearized problem of supersonic flow past a wedge in the case of arbitrary perturbations. (Russian) Zbl 1240.35349 Sib. Zh. Ind. Mat. 13, No. 1, 3-17 (2010). MSC: 35L65 76L05 PDF BibTeX XML Cite \textit{A. M. Blokhin} and \textit{I. A. Anufriev}, Sib. Zh. Ind. Mat. 13, No. 1, 3--17 (2010; Zbl 1240.35349)
Chemin, Jean-Yves; Gallagher, Isabelle Large, global solutions to the Navier-Stokes equations, slowly varying in one direction. (English) Zbl 1189.35220 Trans. Am. Math. Soc. 362, No. 6, 2859-2873 (2010). MSC: 35Q30 76D05 76D03 PDF BibTeX XML Cite \textit{J.-Y. Chemin} and \textit{I. Gallagher}, Trans. Am. Math. Soc. 362, No. 6, 2859--2873 (2010; Zbl 1189.35220) Full Text: DOI
Li, Dong; Rodrigo, José L. Wellposedness and regularity of solutions of an aggregation equation. (English) Zbl 1197.35012 Rev. Mat. Iberoam. 26, No. 1, 261-294 (2010). Reviewer: Yaping Liu (Pittsburg) MSC: 35A01 35A02 35B45 35R11 35B65 PDF BibTeX XML Cite \textit{D. Li} and \textit{J. L. Rodrigo}, Rev. Mat. Iberoam. 26, No. 1, 261--294 (2010; Zbl 1197.35012) Full Text: DOI Euclid
Saal, Jürgen Wellposedness of the tornado-hurricane equations. (English) Zbl 1423.35298 Discrete Contin. Dyn. Syst. 26, No. 2, 649-664 (2010). MSC: 35Q30 76N10 PDF BibTeX XML Cite \textit{J. Saal}, Discrete Contin. Dyn. Syst. 26, No. 2, 649--664 (2010; Zbl 1423.35298) Full Text: DOI
Zhao, Xiangqing; Guo, Ai Improved local wellposedness of Cauchy problem for generalized KdV-BO equation. (English) Zbl 1212.35442 J. Math. Res. Expo. 29, No. 2, 371-375 (2009). MSC: 35Q53 35B30 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{A. Guo}, J. Math. Res. Expo. 29, No. 2, 371--375 (2009; Zbl 1212.35442) Full Text: DOI
Zhang, Ting Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space. (English) Zbl 1173.35633 Commun. Math. Phys. 287, No. 1, 211-224 (2009); erratum ibid. 295, No. 3, 877-884 (2010). MSC: 35Q30 35B30 76D05 PDF BibTeX XML Cite \textit{T. Zhang}, Commun. Math. Phys. 287, No. 1, 211--224 (2009; Zbl 1173.35633) Full Text: DOI arXiv
Wu, Sijue Almost global wellposedness of the 2-D full water wave problem. (English) Zbl 1181.35205 Invent. Math. 177, No. 1, 45-135 (2009). Reviewer: Dimitar A. Kolev (Sofia) MSC: 35Q35 76B15 35R35 35B40 PDF BibTeX XML Cite \textit{S. Wu}, Invent. Math. 177, No. 1, 45--135 (2009; Zbl 1181.35205) Full Text: DOI arXiv
Chavent, Guy Nonlinear least squares for inverse problems. Theoretical foundations and step-by-step guide for applications. (English) Zbl 1191.65062 Scientific Computation. Dordrecht: Springer (ISBN 978-90-481-2784-9/hbk). xiv, 360 p. (2009). Reviewer: Dinh Nho Hao (Hanoi) MSC: 65J15 65-02 90-02 65J22 47J07 90C20 PDF BibTeX XML Cite \textit{G. Chavent}, Nonlinear least squares for inverse problems. Theoretical foundations and step-by-step guide for applications. Dordrecht: Springer (2009; Zbl 1191.65062)
Park, Dong-Gun; Jeong, Jin-Mun; Kim, Han-Geul Regular problems for semilinear hyperbolic type equations. (English) Zbl 1178.35266 NoDEA, Nonlinear Differ. Equ. Appl. 16, No. 2, 235-253 (2009). Reviewer: Cheng-Hsiung Hsu (Chung-Li) MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{D.-G. Park} et al., NoDEA, Nonlinear Differ. Equ. Appl. 16, No. 2, 235--253 (2009; Zbl 1178.35266) Full Text: DOI
Chemin, Jean-Yves; Gallagher, Isabelle Wellposedness and stability results for the Navier-Stokes equations in \(\mathbb R^3\). (English) Zbl 1165.35038 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, No. 2, 599-624 (2009). MSC: 35Q30 76D05 35B35 PDF BibTeX XML Cite \textit{J.-Y. Chemin} and \textit{I. Gallagher}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, No. 2, 599--624 (2009; Zbl 1165.35038) Full Text: DOI EuDML
Zhou, Jiangbo; Tian, Lixin Global exponential stabilization of Camassa-Holm equation under period boundary conditions. (Chinese. English summary) Zbl 1199.35299 J. Jiangsu Univ., Nat. Sci. 29, No. 6, 549-552 (2008). MSC: 35Q35 76B15 35B35 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{L. Tian}, J. Jiangsu Univ., Nat. Sci. 29, No. 6, 549--552 (2008; Zbl 1199.35299)
D’Ancona, Piero; Kinoshita, Tamotu; Spagnolo, Sergio On the 2 by 2 weakly hyperbolic systems. (English) Zbl 1177.35132 Osaka J. Math. 45, No. 4, 921-939 (2008). MSC: 35L45 35A02 PDF BibTeX XML Cite \textit{P. D'Ancona} et al., Osaka J. Math. 45, No. 4, 921--939 (2008; Zbl 1177.35132) Full Text: Euclid
Zhang, Ting; Fang, Daoyuan Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations. (English) Zbl 1159.35058 J. Math. Pures Appl. (9) 90, No. 5, 413-449 (2008). Reviewer: Bernard Ducomet (Bruyères le Châtel) MSC: 35Q30 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{D. Fang}, J. Math. Pures Appl. (9) 90, No. 5, 413--449 (2008; Zbl 1159.35058) Full Text: DOI arXiv
Banks, H. T.; Bardsley, J. M. Wellposedness for systems arising in time domain electromagnetics in dielectrics. (English) Zbl 1152.78307 Int. J. Pure Appl. Math. 46, No. 1, 1-18 (2008). MSC: 78A40 78A50 35Q60 35A15 35D05 PDF BibTeX XML Cite \textit{H. T. Banks} and \textit{J. M. Bardsley}, Int. J. Pure Appl. Math. 46, No. 1, 1--18 (2008; Zbl 1152.78307)
Christ, Michael; Colliander, James; Tao, Terence A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order. (English) Zbl 1136.35087 J. Funct. Anal. 254, No. 2, 368-395 (2008). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q55 35A05 35B45 35D05 PDF BibTeX XML Cite \textit{M. Christ} et al., J. Funct. Anal. 254, No. 2, 368--395 (2008; Zbl 1136.35087) Full Text: DOI arXiv
Knyazev, Andrew V. Observations on degenerate saddle point problems. (English) Zbl 1173.35339 Comput. Methods Appl. Mech. Eng. 196, No. 37-40, 3742-3749 (2007). MSC: 35B30 PDF BibTeX XML Cite \textit{A. V. Knyazev}, Comput. Methods Appl. Mech. Eng. 196, No. 37--40, 3742--3749 (2007; Zbl 1173.35339) Full Text: DOI arXiv
Avalos, George; Triggiani, Roberto Mathematical analysis of PDE systems which govern fluid-structure interactive phenomena. (English) Zbl 1330.74057 Bol. Soc. Parana. Mat. (3) 25, No. 1-2, 17-36 (2007). MSC: 74F10 35Q35 74H30 76D03 93C20 93D15 PDF BibTeX XML Cite \textit{G. Avalos} and \textit{R. Triggiani}, Bol. Soc. Parana. Mat. (3) 25, No. 1--2, 17--36 (2007; Zbl 1330.74057) Full Text: DOI
Boulite, S.; Fragnelli, G.; Halloumi, M.; Maniar, L. A partial differential equation with nonautonomous past delay in \(L^1\)-phase space. (English) Zbl 1154.35088 Int. J. Evol. Equ. 2, No. 2, 165-182 (2007). Reviewer: Peixuan Weng (Guangzhou) MSC: 35R10 35B40 47D06 47N60 92D25 PDF BibTeX XML Cite \textit{S. Boulite} et al., Int. J. Evol. Equ. 2, No. 2, 165--182 (2007; Zbl 1154.35088)
Chemin, Jean-Yves; Zhang, Ping On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations. (English) Zbl 1132.35068 Commun. Math. Phys. 272, No. 2, 529-566 (2007). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{J.-Y. Chemin} and \textit{P. Zhang}, Commun. Math. Phys. 272, No. 2, 529--566 (2007; Zbl 1132.35068) Full Text: DOI
Chen, Min Some discussions on wellposedness of the Euler equation. (English) Zbl 1142.35501 Ann. Differ. Equations 23, No. 2, 127-130 (2007). MSC: 35L45 35L60 35L65 35Q35 PDF BibTeX XML Cite \textit{M. Chen}, Ann. Differ. Equations 23, No. 2, 127--130 (2007; Zbl 1142.35501)
Zhang, Xiaoyi Global wellposedness and scattering for 3D energy critical Schrödinger equation with repulsive potential and radial data. (English) Zbl 1187.35249 Forum Math. 19, No. 4, 633-675 (2007). Reviewer: Peter Y. H. Pang (Singapore) MSC: 35Q55 35A01 35B30 35B35 81U99 PDF BibTeX XML Cite \textit{X. Zhang}, Forum Math. 19, No. 4, 633--675 (2007; Zbl 1187.35249) Full Text: DOI
Kato, Keiichi On the existence of solutions to the Benjamin-Ono equation with non differentiable initial data. (English) Zbl 1170.35370 Ozawa, Tohru (ed.) et al., Nonlinear dispersive equations. Tokyo: Gakkotosho (ISBN 4-7625-0435-1/hbk). GAKUTO International Series. Mathematical Sciences and Applications 26, 101-110 (2006). Reviewer: Allen Parker (Newcastle upon Tyne) MSC: 35G25 45K05 35Q58 35A05 PDF BibTeX XML Cite \textit{K. Kato}, GAKUTO Int. Ser., Math. Sci. Appl. 26, 101--110 (2006; Zbl 1170.35370)
Zhang, Jianfeng The wellposedness of FBSDEs. (English) Zbl 1132.60315 Discrete Contin. Dyn. Syst., Ser. B 6, No. 4, 927-940 (2006). MSC: 60H10 PDF BibTeX XML Cite \textit{J. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 6, No. 4, 927--940 (2006; Zbl 1132.60315) Full Text: DOI
Boulite, S.; Maniar, L.; Moussi, M. Wellposedness and asymptotic behaviour of non-autonomous boundary Cauchy problems. (English) Zbl 1119.34045 Forum Math. 18, No. 4, 611-638 (2006). Reviewer: Shangquan Bu (Beijing) MSC: 34G10 35B30 PDF BibTeX XML Cite \textit{S. Boulite} et al., Forum Math. 18, No. 4, 611--638 (2006; Zbl 1119.34045) Full Text: DOI
Latushkin, Yuri; Prüss, Jan; Schnaubelt, Roland Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions. (English) Zbl 1113.35110 J. Evol. Equ. 6, No. 4, 537-576 (2006). MSC: 35K90 35B40 35K35 35K50 35K57 37L10 PDF BibTeX XML Cite \textit{Y. Latushkin} et al., J. Evol. Equ. 6, No. 4, 537--576 (2006; Zbl 1113.35110) Full Text: DOI
Kappeler, T.; Topalov, P. Global wellposedness of KdV in \(H^{-1}(\mathbb T,\mathbb R)\). (English) Zbl 1106.35081 Duke Math. J. 135, No. 2, 327-360 (2006). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35Q53 35D05 35G25 PDF BibTeX XML Cite \textit{T. Kappeler} and \textit{P. Topalov}, Duke Math. J. 135, No. 2, 327--360 (2006; Zbl 1106.35081) Full Text: DOI
Chemin, Jean-Yves; Zhang, Ping The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations. (English) Zbl 1107.35097 Sémin. Équ. Dériv. Partielles, Éc. Polytech., Cent. Math., Palaiseau 2005-2006, VIII1-VIII18 (2006). MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{J.-Y. Chemin} and \textit{P. Zhang}, Sémin. Équ. Dériv. Partielles, Éc. Polytech., Cent. Math. Laurent Schwartz, Palaiseau 2005--2006, VIII1-VIII18 (2006; Zbl 1107.35097) Full Text: EuDML