×

A new discontinuous Galerkin method for Kirchhoff plates. (English) Zbl 1231.74416

Summary: A general framework of constructing \(C^{0}\) discontinuous Galerkin (CDG) methods is developed for solving the Kirchhoff plate bending problem, following some ideas in P. Castillo et al. [SIAM J. Numer. Anal. 38, No. 5, 1676–1706 (2000; Zbl 0987.65111)] and B. Cockburn [ZAMM, Z. Angew. Math. Mech. 83, No. 11, 731–754 (2003; Zbl 1036.65079)]. The numerical traces are determined based on a discrete stability identity, which lead to a class of stable CDG methods. A stable CDG method, called the LCDG method, is particularly interesting in our study. It can be viewed as an extension to fourth-order problems of the LDG method studied in P. Castillo (2000; Zbl 0987.65111) and C. Cockburn (2003; Zbl 1036.65079). For this method, optimal order error estimates in certain broken energy norm and \(H^{1}\)-norm are established. Some numerical results are reported, confirming the theoretical convergence orders.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[3] Babus˘ka, I.; Zlámal, M., Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal., 10, 863-875 (1973) · Zbl 0237.65066
[4] Baker, G. A., Finite element methods for elliptic equations using nonconforming elements, Math. Comput., 31, 44-59 (1977) · Zbl 0364.65085
[6] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2008), Springer: Springer New York · Zbl 1135.65042
[7] Brenner, S. C.; Sung, L., \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22/23, 83-118 (2005) · Zbl 1071.65151
[8] Brezzi, F.; Cockburn, B.; Marini, L. D.; Süli, E., Stabilization mechanisms in discontinuous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg., 195, 3293-3310 (2006) · Zbl 1125.65102
[9] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer New York · Zbl 0788.73002
[10] Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 18, 1676-1706 (2000) · Zbl 0987.65111
[11] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[12] Cockburn, B., Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech., 83, 731-754 (2003) · Zbl 1036.65079
[13] (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods. Theory, Computation and Applications. Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Computational Science in Engineering, bol. 11 (2000), Springer) · Zbl 0935.00043
[14] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[15] Dauge, M., Elliptic Boundary Value Problems on Corner Domains. Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, vol. 1341 (1988), Springer: Springer Berlin · Zbl 0668.35001
[16] Engel, G.; Garikipati, K.; Hughes, T. J.R.; Larson, M.; Mazzei, L.; Taylor, R., Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191, 3669-3750 (2002) · Zbl 1086.74038
[17] Ern, A.; Guermond, J.-L., Discontinuous Galerkin methods for Friedrichs’ systems. Part I. General theory, SIAM J. Numer. Anal., 44, 753-778 (2006) · Zbl 1122.65111
[18] Ern, A.; Guermond, J.-L., Discontinuous Galerkin methods for Friedrichs’ systems. Part II. Second-order elliptic PDEs, SIAM J. Numer. Anal., 44, 2363-2388 (2006) · Zbl 1133.65098
[19] Feng, K.; Shi, Z., Mathematical Theory of Elastic Structures (1995), Springer: Springer Berlin
[20] Fraeins de Veubeke, B., Variational principles and the patch test, Int. J. Numer. Methods Engrg., 8, 783-801 (1974) · Zbl 0284.73043
[21] Grisvard, P. G., Singularities in Boundary Value Problems (1992), Springer: Springer Berlin · Zbl 0766.35001
[22] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover · Zbl 1191.74002
[23] Morley, L. S.D., The triangular equilibrium element in the solution of plate bending problems, Aero. Quart., 19, 149-169 (1968)
[24] Mozolevski, I.; Bösing, P. R., Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourth-order elliptic problems, Comput. Methods Appl. Math., 7, 365-375 (2007) · Zbl 1136.65098
[25] Mozolevski, I.; Süli, E., A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation, Comput. Methods Appl. Math., 3, 596-607 (2003) · Zbl 1048.65100
[26] Mozolevski, I.; Süli, E.; Bösing, P. R., hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation, J. Sci. Comput., 30, 465-491 (2007) · Zbl 1116.65117
[27] Reddy, J. N., Theory and Analysis of Elastic Plates and Shells (2007), CRC Press: CRC Press New York · Zbl 1213.74194
[28] Süli, E.; Mozolevski, I., hp-version interior penalty DGFEMs for the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 196, 1851-1863 (2007) · Zbl 1173.65360
[29] Wells, G. N.; Dung, N. T., A \(C^0\) discontinuous Galerkin formulation for Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 196, 3370-3380 (2007) · Zbl 1173.74447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.