×

Shavgulidze, Evgeniĭ Tengizovich

Author ID: shavgulidze.evgenii-tengizovich Recent zbMATH articles by "Shavgulidze, Evgeniĭ Tengizovich"
Published as: Shavgulidze, E. T.; Shavgulidze, Evgeniy T.; Shavgulidze, Evgeniĭ Tengizovich
Documents Indexed: 55 Publications since 1975, including 2 Books and 7 Additional arXiv Preprints
Co-Authors: 3 Co-Authors with 26 Joint Publications
31 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

34 Publications have been cited 55 times in 27 Documents Cited by Year
Some properties of quasi-invariant measures on groups of diffeomorphisms of the circle. Zbl 1072.37503
Shavgulidze, E. T.
11
2000
Correlation functions in the Schwarzian theory. Zbl 1404.81218
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
10
2018
On a measure that is quasi-invariant with respect to the action of a group of diffeomorphisms of a finite-dimensional manifold. Zbl 0704.58010
Shavgulidze, E. T.
8
1989
Method of approximate evaluation of path integrals using perturbation theory with convergent series. I. Zbl 0938.81015
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
7
1996
Unusual view of the Schwarzian theory. Zbl 1404.28022
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
7
2018
An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle. Zbl 0412.58011
Shavgulidze, E. T.
6
1979
Quasiinvariant measures on groups of diffeomorphisms. Zbl 0916.58008
Shavgulidze, E. T.
6
1997
Conditions for certain forms of completeness in the class of projective limits of sequences of inductive limits of sequences of Frechet spaces. Zbl 0369.46013
Savgulidze, E. T.
4
1977
Nonlinear nonlocal substitutions in functional integrals. Zbl 1448.81377
Belokurov, V. V.; Shavgulidze, E. T.
4
2020
On two classes of spaces that are reflexive in the sense of Pontryagin. Zbl 1076.22001
Akbarov, S. S.; Shavgulidze, E. T.
3
2003
Existence of functional integrals in a model of quantum field theory on a loop space. Zbl 1229.58013
Solov’ev, Yu. P.; Belokurov, V. V.; Shavgulidze, E. T.
3
2004
Method for approximate evaluation of path integrals using perturbation theory with convergent series. II: Euclidean quantum field theory. Zbl 0938.81016
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
3
1996
Properties of the convolution operation for quasi-invariant measures on groups of diffeomorphisms of a circle. Zbl 1186.58010
Shavgulidze, E. T.
3
2001
Calculation of functional integrals using convergent series. Zbl 0936.28009
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
3
1997
Asymptotic properties of functional integrals on the loop space in the quantum-field model. Zbl 1272.81108
Solov’ev, Yu. P.; Belokurov, V. V.; Shavgulidze, E. T.
2
2005
Perturbation theory with convergent series for functional integrals with respect to the Feynman measure. Zbl 0919.28009
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
2
1997
A general approach to the calculation of functional integrals and the summation of divergent series. Zbl 0972.40005
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
2
1999
A method of summation of divergent series to any accuracy. Zbl 0971.40002
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
2
2000
New perturbation theory for quantum field theory: Convergent series instead of asymptotic expansions. Zbl 1011.81011
Belokurov, V. V.; Shavgulidze, E. T.; Solovyov, Yu. P.
2
2001
The Thompson group \(F\) is amenable. Zbl 1193.43002
Shavgulidze, E. T.
2
2009
Polar decomposition of the Wiener measure: Schwarzian theory versus conformal quantum mechanics. Zbl 1436.81030
Belokurov, V. V.; Shavgulidze, E. T.
2
2019
Examples of computations in the framework of a new perturbation theory with convergent series. Zbl 1042.65002
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.; Yudin, I. L.
1
2001
\(B_r\) completeness. Zbl 0328.46007
Shavgulidze, E. T.
1
1976
Der Satz von Minlos für Masse mit nicht festem Vorzeichen. Zbl 0337.28010
Shavgulidze, E. T.
1
1976
The direct Kolmogorov equation for measures in the Hilbert scale of spaces. Zbl 0425.28011
Shavgulidze, E. T.
1
1978
On Kolmogorov’s forward equation for measures in the Hilbert scale of spaces. Zbl 0402.28009
Savgulidze, E. T.
1
1978
Ein Beispiel eines Maßes, das bezüglich der Operation der Gruppe der Diffeomorphismen einer Kreisperipherie invariant ist. Zbl 0403.28014
Savgulidze, E. T.
1
1978
Hahn-Jordan decomposition for smooth measures. Zbl 0482.28024
Shavgulidze, E. T.
1
1981
Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory. Zbl 1031.81517
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
1
2000
Schwarzian functional integrals calculus. Zbl 1519.81376
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
1
2020
Amenability of discrete subgroups of the group of diffeomorphisms of the circle. Zbl 1179.43001
Shavgulidze, E. T.
1
2009
A summation method for divergent series. Zbl 0964.40003
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
1
1999
Peculiar spaces for relativistic fields. Zbl 1459.81073
Belokurov, Vladimir Viktorovich; Shavgulidze, Evgeniĭ Tengizovich
1
2020
Path integrals in quadratic gravity. Zbl 1522.81166
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
1
2022
Path integrals in quadratic gravity. Zbl 1522.81166
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
1
2022
Nonlinear nonlocal substitutions in functional integrals. Zbl 1448.81377
Belokurov, V. V.; Shavgulidze, E. T.
4
2020
Schwarzian functional integrals calculus. Zbl 1519.81376
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
1
2020
Peculiar spaces for relativistic fields. Zbl 1459.81073
Belokurov, Vladimir Viktorovich; Shavgulidze, Evgeniĭ Tengizovich
1
2020
Polar decomposition of the Wiener measure: Schwarzian theory versus conformal quantum mechanics. Zbl 1436.81030
Belokurov, V. V.; Shavgulidze, E. T.
2
2019
Correlation functions in the Schwarzian theory. Zbl 1404.81218
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
10
2018
Unusual view of the Schwarzian theory. Zbl 1404.28022
Belokurov, Vladimir V.; Shavgulidze, Evgeniy T.
7
2018
The Thompson group \(F\) is amenable. Zbl 1193.43002
Shavgulidze, E. T.
2
2009
Amenability of discrete subgroups of the group of diffeomorphisms of the circle. Zbl 1179.43001
Shavgulidze, E. T.
1
2009
Asymptotic properties of functional integrals on the loop space in the quantum-field model. Zbl 1272.81108
Solov’ev, Yu. P.; Belokurov, V. V.; Shavgulidze, E. T.
2
2005
Existence of functional integrals in a model of quantum field theory on a loop space. Zbl 1229.58013
Solov’ev, Yu. P.; Belokurov, V. V.; Shavgulidze, E. T.
3
2004
On two classes of spaces that are reflexive in the sense of Pontryagin. Zbl 1076.22001
Akbarov, S. S.; Shavgulidze, E. T.
3
2003
Properties of the convolution operation for quasi-invariant measures on groups of diffeomorphisms of a circle. Zbl 1186.58010
Shavgulidze, E. T.
3
2001
New perturbation theory for quantum field theory: Convergent series instead of asymptotic expansions. Zbl 1011.81011
Belokurov, V. V.; Shavgulidze, E. T.; Solovyov, Yu. P.
2
2001
Examples of computations in the framework of a new perturbation theory with convergent series. Zbl 1042.65002
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.; Yudin, I. L.
1
2001
Some properties of quasi-invariant measures on groups of diffeomorphisms of the circle. Zbl 1072.37503
Shavgulidze, E. T.
11
2000
A method of summation of divergent series to any accuracy. Zbl 0971.40002
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
2
2000
Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory. Zbl 1031.81517
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
1
2000
A general approach to the calculation of functional integrals and the summation of divergent series. Zbl 0972.40005
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
2
1999
A summation method for divergent series. Zbl 0964.40003
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
1
1999
Quasiinvariant measures on groups of diffeomorphisms. Zbl 0916.58008
Shavgulidze, E. T.
6
1997
Calculation of functional integrals using convergent series. Zbl 0936.28009
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
3
1997
Perturbation theory with convergent series for functional integrals with respect to the Feynman measure. Zbl 0919.28009
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
2
1997
Method of approximate evaluation of path integrals using perturbation theory with convergent series. I. Zbl 0938.81015
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
7
1996
Method for approximate evaluation of path integrals using perturbation theory with convergent series. II: Euclidean quantum field theory. Zbl 0938.81016
Belokurov, V. V.; Solov’ev, Yu. P.; Shavgulidze, E. T.
3
1996
On a measure that is quasi-invariant with respect to the action of a group of diffeomorphisms of a finite-dimensional manifold. Zbl 0704.58010
Shavgulidze, E. T.
8
1989
Hahn-Jordan decomposition for smooth measures. Zbl 0482.28024
Shavgulidze, E. T.
1
1981
An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle. Zbl 0412.58011
Shavgulidze, E. T.
6
1979
The direct Kolmogorov equation for measures in the Hilbert scale of spaces. Zbl 0425.28011
Shavgulidze, E. T.
1
1978
On Kolmogorov’s forward equation for measures in the Hilbert scale of spaces. Zbl 0402.28009
Savgulidze, E. T.
1
1978
Ein Beispiel eines Maßes, das bezüglich der Operation der Gruppe der Diffeomorphismen einer Kreisperipherie invariant ist. Zbl 0403.28014
Savgulidze, E. T.
1
1978
Conditions for certain forms of completeness in the class of projective limits of sequences of inductive limits of sequences of Frechet spaces. Zbl 0369.46013
Savgulidze, E. T.
4
1977
\(B_r\) completeness. Zbl 0328.46007
Shavgulidze, E. T.
1
1976
Der Satz von Minlos für Masse mit nicht festem Vorzeichen. Zbl 0337.28010
Shavgulidze, E. T.
1
1976

Citations by Year