×

zbMATH — the first resource for mathematics

Beléndez, Augusto

Compute Distance To:
Author ID: belendez.augusto Recent zbMATH articles by "Beléndez, Augusto"
Published as: Beléndez, A.; Beléndez, Augusto
Documents Indexed: 42 Publications since 2003

Publications by Year

Citations contained in zbMATH Open

34 Publications have been cited 287 times in 159 Documents Cited by Year
Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an \(x^{1/3}\) force nonlinear oscillator. Zbl 1209.65083
Beléndez, A.; Pascual, C.; Gallego, S.; Ortuño, M.; Neipp, C.
36
2007
Application of the homotopy perturbation method to the nonlinear pendulum. Zbl 1119.70017
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
33
2007
Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators. Zbl 1142.65055
Beléndez, A.; Beléndez, T.; Márquez, A.; Neipp, C.
25
2008
Application of a modified He’s homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities. Zbl 1167.34327
Beléndez, A.; Pascual, C.; Ortuño, M.; Beléndez, T.; Gallego, S.
23
2009
Solution for an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method. Zbl 1154.65349
Beléndez, A.; Pascual, C.; Beléndez, T.; Hernández, A.
19
2009
An accurate closed-form approximate solution for the quintic Duffing oscillator equation. Zbl 1201.34019
Beléndez, A.; Bernabeu, G.; Francés, J.; Méndez, D. I.; Marini, S.
14
2010
An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method. Zbl 1233.70008
Beléndez, A.; Méndez, D. I.; Fernández, E.; Marini, S.; Pascual, I.
14
2009
Rational harmonic balance based method for conservative nonlinear oscillators: application to the Duffing equation. Zbl 1258.70039
Beléndez, A.; Gimeno, E.; Beléndez, T.; Hernández, A.
10
2009
Cubication of conservative nonlinear oscillators. Zbl 1257.65048
Beléndez, Augusto; Álvarez, Mariela L.; Fernández, Elena; Pascual, Inmaculada
8
2009
Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable. Zbl 1145.70012
Beléndez, A.; Gimeno, E.; Fernández, E.; Méndez, D. I.; Alvarez, M. L.
8
2008
Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators. Zbl 1223.34055
Beléndez, A.; Gimeno, E.; Álvarez, M. L.; Méndez, D. I.; Hernández, A.
8
2008
Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He’s homotopy perturbation method. Zbl 1220.70022
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
8
2008
Nonlinear oscillator with discontinuity by generalized harmonic balance method. Zbl 1189.65159
Beléndez, A.; Gimeno, E.; Alvarez, M. L.; Méndez, D. I.
7
2009
Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method. Zbl 1197.65105
Beléndez, A.; Beléndez, T.; Neipp, C.; Hernández, A.; Álvarez, M. L.
7
2009
Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring. Zbl 1227.78007
Beléndez, A.; Fernández, E.; Rodes, J. J.; Fuentes, R.; Pascual, I.
7
2009
Comments on “Investigation of the properties of the period for the nonlinear oscillator \(\ddot x+(1+\dot x{}^2)x=0\)”. Zbl 1242.34056
Beléndez, A.; Beléndez, T.; Hernández, A.; Gallego, S.; Ortuño, M.; Neipp, C.
6
2007
Higher-order approximate solutions to the relativistic and Duffing-harmonic oscillators by modified He’s homotopy methods. Zbl 1175.70023
Beléndez, A.; Pascual, C.; Fernández, E.; Neipp, C.; Beléndez, T.
6
2008
Analytical approximate solutions for conservative nonlinear oscillators by modified rational harmonic balance method. Zbl 1203.34011
Beléndez, A.; Gimeno, E.; Álvarez, M. L.; Yebra, M. S.; Méndez, D. I.
5
2010
Higher order analytical approximate solutions to the nonlinear pendulum by He’s homotopy method. Zbl 1201.70018
Beléndez, A.; Pascual, C.; Álvarez, M. L.; Méndez, D. I.; Yebra, M. S.; Hernández, A.
5
2009
Asymptotic representations of the period for the nonlinear oscillator. (Asymptotic representations of the period for the nonlinear oscillator \(\ddot x+(1+\dot x^2)x=0\).) Zbl 1241.70031
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
4
2007
Notes on “Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms”. Zbl 1235.34110
Beléndez, A.; Arribas, E.; Francés, J.; Pascual, I.
4
2011
Approximate expressions for the period of a simple pendulum using a Taylor series expansion. Zbl 1315.70007
Beléndez, Augusto; Arribas, Enrique; Márquez, Andrés; Ortuño, Manuel; Gallego, Sergi
4
2011
Analytical approximate solutions for the cubic-quintic Duffing oscillator in terms of elementary functions. Zbl 1251.34002
Beléndez, A.; Alvarez, M. L.; Francés, J.; Bleda, S.; Beléndez, T.; Nájera, A.; Arribas, E.
4
2012
Linearization of conservative nonlinear oscillators. Zbl 1159.70016
Beléndez, A.; Álvarez, M. L.; Fernández, E.; Pascual, I.
3
2009
Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities. Zbl 1371.34057
Beléndez, A.; Beléndez, T.; Martínez, F. J.; Pascual, C.; Alvarez, M. L.; Arribas, E.
3
2016
Approximate analytical solutions for the relativistic oscillator using a linearized harmonic balance method. Zbl 1170.34321
Beléndez, A.; Méndez, D. I.; Alvarez, M. L.; Pascual, C.; Bélendez, T.
2
2009
Homotopy perturbation method for a conservative \(x^{1/3}\) force nonlinear oscillator. Zbl 1189.65160
Beléndez, Augusto
2
2009
A novel rational harmonic balance approach for periodic solutions of conservative nonlinear oscillators. Zbl 1401.34038
Beléndez, A.; Gimeno, E.; Álvarez, M. L.; Gallego, S.; Ortuño, M.; Méndez, D. I.
2
2009
Considerations on “Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring”. Zbl 1234.78003
Beléndez, A.; Fernández, E.; Rodes, J. J.; Fuentes, R.; Pascual, I.
2
2009
Erratum to “Asymptotic representations of the period for the nonlinear oscillator \(\ddot x+(1+\dot x^2)x=0\)”. Zbl 1242.70040
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
2
2007
Approximate solutions for the nonlinear pendulum equation using a rational harmonic representation. Zbl 1268.70005
Beléndez, Augusto; Arribas, Enrique; Ortuño, Manuel; Gallego, Sergi; Márquez Ruiz, Andres; Pascual, Inmaculada
2
2012
Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution. Zbl 1333.34056
Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique
2
2015
Letters and comments. Higher accurate approximate solutions for the simple pendulum in terms of elementary functions. Zbl 1373.70018
Beléndez, Augusto; Francés, Jorge; Ortuño, Manuel; Gallego, Sergi; Bernabeu, José Guillermo
1
2010
Comments on ‘A finite extensibility nonlinear oscillator’. Zbl 1387.65060
Beléndez, A.; Arribas, E.; Francés, J.; Pascual, I.
1
2012
Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities. Zbl 1371.34057
Beléndez, A.; Beléndez, T.; Martínez, F. J.; Pascual, C.; Alvarez, M. L.; Arribas, E.
3
2016
Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution. Zbl 1333.34056
Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique
2
2015
Analytical approximate solutions for the cubic-quintic Duffing oscillator in terms of elementary functions. Zbl 1251.34002
Beléndez, A.; Alvarez, M. L.; Francés, J.; Bleda, S.; Beléndez, T.; Nájera, A.; Arribas, E.
4
2012
Approximate solutions for the nonlinear pendulum equation using a rational harmonic representation. Zbl 1268.70005
Beléndez, Augusto; Arribas, Enrique; Ortuño, Manuel; Gallego, Sergi; Márquez Ruiz, Andres; Pascual, Inmaculada
2
2012
Comments on ‘A finite extensibility nonlinear oscillator’. Zbl 1387.65060
Beléndez, A.; Arribas, E.; Francés, J.; Pascual, I.
1
2012
Notes on “Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms”. Zbl 1235.34110
Beléndez, A.; Arribas, E.; Francés, J.; Pascual, I.
4
2011
Approximate expressions for the period of a simple pendulum using a Taylor series expansion. Zbl 1315.70007
Beléndez, Augusto; Arribas, Enrique; Márquez, Andrés; Ortuño, Manuel; Gallego, Sergi
4
2011
An accurate closed-form approximate solution for the quintic Duffing oscillator equation. Zbl 1201.34019
Beléndez, A.; Bernabeu, G.; Francés, J.; Méndez, D. I.; Marini, S.
14
2010
Analytical approximate solutions for conservative nonlinear oscillators by modified rational harmonic balance method. Zbl 1203.34011
Beléndez, A.; Gimeno, E.; Álvarez, M. L.; Yebra, M. S.; Méndez, D. I.
5
2010
Letters and comments. Higher accurate approximate solutions for the simple pendulum in terms of elementary functions. Zbl 1373.70018
Beléndez, Augusto; Francés, Jorge; Ortuño, Manuel; Gallego, Sergi; Bernabeu, José Guillermo
1
2010
Application of a modified He’s homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities. Zbl 1167.34327
Beléndez, A.; Pascual, C.; Ortuño, M.; Beléndez, T.; Gallego, S.
23
2009
Solution for an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method. Zbl 1154.65349
Beléndez, A.; Pascual, C.; Beléndez, T.; Hernández, A.
19
2009
An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method. Zbl 1233.70008
Beléndez, A.; Méndez, D. I.; Fernández, E.; Marini, S.; Pascual, I.
14
2009
Rational harmonic balance based method for conservative nonlinear oscillators: application to the Duffing equation. Zbl 1258.70039
Beléndez, A.; Gimeno, E.; Beléndez, T.; Hernández, A.
10
2009
Cubication of conservative nonlinear oscillators. Zbl 1257.65048
Beléndez, Augusto; Álvarez, Mariela L.; Fernández, Elena; Pascual, Inmaculada
8
2009
Nonlinear oscillator with discontinuity by generalized harmonic balance method. Zbl 1189.65159
Beléndez, A.; Gimeno, E.; Alvarez, M. L.; Méndez, D. I.
7
2009
Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method. Zbl 1197.65105
Beléndez, A.; Beléndez, T.; Neipp, C.; Hernández, A.; Álvarez, M. L.
7
2009
Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring. Zbl 1227.78007
Beléndez, A.; Fernández, E.; Rodes, J. J.; Fuentes, R.; Pascual, I.
7
2009
Higher order analytical approximate solutions to the nonlinear pendulum by He’s homotopy method. Zbl 1201.70018
Beléndez, A.; Pascual, C.; Álvarez, M. L.; Méndez, D. I.; Yebra, M. S.; Hernández, A.
5
2009
Linearization of conservative nonlinear oscillators. Zbl 1159.70016
Beléndez, A.; Álvarez, M. L.; Fernández, E.; Pascual, I.
3
2009
Approximate analytical solutions for the relativistic oscillator using a linearized harmonic balance method. Zbl 1170.34321
Beléndez, A.; Méndez, D. I.; Alvarez, M. L.; Pascual, C.; Bélendez, T.
2
2009
Homotopy perturbation method for a conservative \(x^{1/3}\) force nonlinear oscillator. Zbl 1189.65160
Beléndez, Augusto
2
2009
A novel rational harmonic balance approach for periodic solutions of conservative nonlinear oscillators. Zbl 1401.34038
Beléndez, A.; Gimeno, E.; Álvarez, M. L.; Gallego, S.; Ortuño, M.; Méndez, D. I.
2
2009
Considerations on “Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring”. Zbl 1234.78003
Beléndez, A.; Fernández, E.; Rodes, J. J.; Fuentes, R.; Pascual, I.
2
2009
Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators. Zbl 1142.65055
Beléndez, A.; Beléndez, T.; Márquez, A.; Neipp, C.
25
2008
Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable. Zbl 1145.70012
Beléndez, A.; Gimeno, E.; Fernández, E.; Méndez, D. I.; Alvarez, M. L.
8
2008
Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators. Zbl 1223.34055
Beléndez, A.; Gimeno, E.; Álvarez, M. L.; Méndez, D. I.; Hernández, A.
8
2008
Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He’s homotopy perturbation method. Zbl 1220.70022
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
8
2008
Higher-order approximate solutions to the relativistic and Duffing-harmonic oscillators by modified He’s homotopy methods. Zbl 1175.70023
Beléndez, A.; Pascual, C.; Fernández, E.; Neipp, C.; Beléndez, T.
6
2008
Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an \(x^{1/3}\) force nonlinear oscillator. Zbl 1209.65083
Beléndez, A.; Pascual, C.; Gallego, S.; Ortuño, M.; Neipp, C.
36
2007
Application of the homotopy perturbation method to the nonlinear pendulum. Zbl 1119.70017
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
33
2007
Comments on “Investigation of the properties of the period for the nonlinear oscillator \(\ddot x+(1+\dot x{}^2)x=0\)”. Zbl 1242.34056
Beléndez, A.; Beléndez, T.; Hernández, A.; Gallego, S.; Ortuño, M.; Neipp, C.
6
2007
Asymptotic representations of the period for the nonlinear oscillator. (Asymptotic representations of the period for the nonlinear oscillator \(\ddot x+(1+\dot x^2)x=0\).) Zbl 1241.70031
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
4
2007
Erratum to “Asymptotic representations of the period for the nonlinear oscillator \(\ddot x+(1+\dot x^2)x=0\)”. Zbl 1242.70040
Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A.
2
2007
all top 5

Cited by 235 Authors

17 Beléndez, Augusto
10 Beléndez, Tarsicio
8 Álvarez, Mariela L.
8 Yıldırım, Ahmet
7 Arribas, Enrique
7 Elías-Zúñiga, Alex
7 Pascual, Carolina
6 Ganji, Davood Domiri
6 Kovacic, Ivana
5 Ganji, S. S.
5 Kaya, Metin Orhan
5 Khan, Yasir
5 Martínez-Romero, Oscar
4 Aminikhah, Hossein
4 Askari, Hassan Randjbar
4 Biazar, Jafar
4 Eslami, Mostafa
4 Francés, Jorge
4 Gimeno, Encarnación
4 Méndez, D. I.
4 Rakaric, Zvonko
4 Ramos, Juan I.
4 Saadatnia, Zia
4 Vázquez-Leal, Héctor
3 Cveticanin, Livija
3 Demirbağ, S. Altay
3 Diaz-Sanchez, Alejandro
3 Filobello-Nino, Uriel A.
3 Herişanu, Nicolae
3 Jimenez-Fernández, Víctor-M.
3 Kalamiyazdi, Mohammad
3 Marinca, Vasile
3 Pascual, Inmaculada
3 Pereyra-Díaz, Domitilo
3 Pérez-Sesma, A.
3 Shamsul Alam, Mohammad
2 Ahmadian, Mohammad Taghi
2 Akbarzade, Mehdi
2 Alam Khan, Najeeb
2 Babazadeh, Hossein
2 Bleda, Sergio
2 Bota, Constantin
2 Dehghan Takht Fooladi, Mehdi
2 Durmaz, Seher
2 Gallego, Sergi
2 Gasull, Armengol
2 Geng, Fazhan
2 Ghorbani, Asghar
2 González-Gaxiola, Oswaldo
2 Haque, B. M. Ikramul
2 He, Ji-Huan
2 Huerta-Chua, J.
2 Jamil, Muhammad Kamran
2 Johannessen, Kim
2 Karimpour, Shooka
2 Momani, Shaher M.
2 Ortuño, Manuel
2 Ozis, Turgut
2 Ramos, Higinio
2 Rodríguez, Ciro A.
2 Saifur Rahman, M.
2 Santiago, José Antonio
2 Sarmiento-Reyes, Arturo
2 Sun, YouHong
2 Tao, Zhaoling
2 Wu, Boying
2 Yazdi, M. Kalami
2 Yu, Yongping
2 Zengin, F. Özen
1 Abdennadher, Moez
1 Ahmadpoor, M. A.
1 Akçı, Ceren
1 Ali, Syed Anwar
1 Alnasr, Modi H.
1 Altay Demirbağ, Sezgin
1 Amin, Md. Ruhul
1 Ara, Asmat
1 Asifuzzaman, Md.
1 Awrejcewicz, Jan
1 Benhammouda, Brahim
1 Bernabeu, G.
1 Bhattacharjee, Jayanta K.
1 Bhattacharjee, Shayak
1 Boyaci, Hakan
1 Bundău, Olivia
1 Buzzi, Claudio Aguinaldo
1 Cai, Ping
1 Cai, XuChu
1 Caruntu, Bogdan
1 Carvalho, Yagor Romano
1 Castañeda-Sheissa, Roberto
1 Cervantes-Perez, J.
1 Chacón-Acosta, Guillermo
1 Chang, Der-Chen E.
1 Chen, Guohua
1 Chen, Huaxiong
1 Chen, Lihui
1 Chowdhury, M. S. H.
1 Chu, Yuming
1 Córdoba-Díaz, René K.
...and 135 more Authors
all top 5

Cited in 46 Serials

29 Computers & Mathematics with Applications
13 Applied Mathematics and Computation
8 Chaos, Solitons and Fractals
8 Mathematical Problems in Engineering
8 International Journal of Applied and Computational Mathematics
7 Nonlinear Analysis. Real World Applications
6 International Journal of Modern Physics B
6 Applied Mathematics Letters
5 Mathematical and Computer Modelling
5 Communications in Nonlinear Science and Numerical Simulation
4 Physics Letters. A
4 Applied Mathematical Modelling
4 International Journal of Computer Mathematics
4 Journal of Applied Mathematics
3 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
3 International Journal of Numerical Methods for Heat & Fluid Flow
3 Discrete Dynamics in Nature and Society
3 International Journal of Differential Equations
2 European Journal of Physics
2 Mathematical Methods in the Applied Sciences
2 Meccanica
2 Computational Mathematics and Modeling
2 Computational and Applied Mathematics
2 Journal of the Egyptian Mathematical Society
1 Acta Mechanica
1 Computer Physics Communications
1 Journal of the Franklin Institute
1 Journal of Differential Equations
1 Mechanics Research Communications
1 Journal of Symbolic Computation
1 Numerical Methods for Partial Differential Equations
1 Journal of Nonlinear Science
1 Bulletin des Sciences Mathématiques
1 Journal of Mathematical Chemistry
1 Nonlinear Dynamics
1 Abstract and Applied Analysis
1 European Journal of Mechanics. A. Solids
1 Qualitative Theory of Dynamical Systems
1 Mathematical Modelling and Analysis
1 Journal of Applied Mathematics and Computing
1 Asian-European Journal of Mathematics
1 Journal of Nonlinear Science and Applications
1 Advances in Mathematical Physics
1 Analysis and Mathematical Physics
1 Journal of Computational Methods in Physics
1 Journal of Siberian Federal University. Mathematics & Physics

Citations by Year