×

Corrêa, Wellington José

Compute Distance To:
Author ID: correa.wellington-jose Recent zbMATH articles by "Corrêa, Wellington José"
Published as: Corrêa, Wellington J.; Corrêa, Wellington José; Corrêa, W. J.
Documents Indexed: 16 Publications since 2013
Co-Authors: 23 Co-Authors with 16 Joint Publications
312 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

13 Publications have been cited 61 times in 38 Documents Cited by Year
Uniform decay rate estimates for Schrödinger and plate equations with nonlinear locally distributed damping. Zbl 1310.58026
Bortot, C. A.; Cavalcanti, M. M.; Corrêa, W. J.; Domingos Cavalcanti, V. N.
20
2013
Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions. Zbl 1373.35285
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Lasiecka, Irena; Lefler, Christopher
9
2016
Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation. Zbl 1358.35164
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Domingos Cavalcanti, Valéria N.; Tebou, Louis
6
2017
Exponential stability for the defocusing semilinear Schrödinger equation with locally distributed damping on a bounded domain. Zbl 1449.35045
Bortot, César Augusto; Corrêa, Wellington José
5
2018
Complex Ginzburg-Landau equations with dynamic boundary conditions. Zbl 1387.35113
Corrêa, Wellington José; Özsarı, Türker
4
2018
Asymptotic behavior of cubic defocusing Schrödinger equations on compact surfaces. Zbl 1404.35404
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Domingos Cavalcanti, Valéria N.; Astudillo Rojas, Maria R.
3
2018
Uniform decay rates for a suspension bridge with locally distributed nonlinear damping. Zbl 1435.35399
Cavalcanti, André D. Domingos; Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Hajjej, Zayd; Cortés., Mauricio Sepúlveda; Asem, Rodrigo Véjar
3
2020
Exponential stability for the nonlinear Schrödinger equation with locally distributed damping. Zbl 1448.35462
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Özsarı, Türker; Sepúlveda, Mauricio; Véjar-Asem, Rodrigo
3
2020
Stabilization of a suspension bridge with locally distributed damping. Zbl 1403.93167
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Fukuoka, Ryuichi; Hajjej, Zayd
3
2018
Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping. Zbl 1438.35385
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Sepúlveda, Mauricio A.; Asem, Rodrigo Véjar
2
2019
Finite difference scheme for a higher order nonlinear Schrödinger equation. Zbl 1427.65147
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Sepúlveda C., Mauricio A.; Véjar-Asem, Rodrigo
1
2019
General decay rate estimates and numerical analysis for a transmission problem with locally distributed nonlinear damping. Zbl 1373.65067
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Rosier, Carole; Dias Silva, Flávio R.
1
2017
Uniform decay rate estimates for the wave equation in an inhomogeneous medium with simultaneous interior and boundary feedbacks. Zbl 1459.35035
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Domingos Cavalcanti, Valéria N.; Faria, Josiane C. O.; Mansouri, Sabeur
1
2021
Uniform decay rate estimates for the wave equation in an inhomogeneous medium with simultaneous interior and boundary feedbacks. Zbl 1459.35035
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Domingos Cavalcanti, Valéria N.; Faria, Josiane C. O.; Mansouri, Sabeur
1
2021
Uniform decay rates for a suspension bridge with locally distributed nonlinear damping. Zbl 1435.35399
Cavalcanti, André D. Domingos; Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Hajjej, Zayd; Cortés., Mauricio Sepúlveda; Asem, Rodrigo Véjar
3
2020
Exponential stability for the nonlinear Schrödinger equation with locally distributed damping. Zbl 1448.35462
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Özsarı, Türker; Sepúlveda, Mauricio; Véjar-Asem, Rodrigo
3
2020
Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping. Zbl 1438.35385
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Sepúlveda, Mauricio A.; Asem, Rodrigo Véjar
2
2019
Finite difference scheme for a higher order nonlinear Schrödinger equation. Zbl 1427.65147
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Sepúlveda C., Mauricio A.; Véjar-Asem, Rodrigo
1
2019
Exponential stability for the defocusing semilinear Schrödinger equation with locally distributed damping on a bounded domain. Zbl 1449.35045
Bortot, César Augusto; Corrêa, Wellington José
5
2018
Complex Ginzburg-Landau equations with dynamic boundary conditions. Zbl 1387.35113
Corrêa, Wellington José; Özsarı, Türker
4
2018
Asymptotic behavior of cubic defocusing Schrödinger equations on compact surfaces. Zbl 1404.35404
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Domingos Cavalcanti, Valéria N.; Astudillo Rojas, Maria R.
3
2018
Stabilization of a suspension bridge with locally distributed damping. Zbl 1403.93167
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Fukuoka, Ryuichi; Hajjej, Zayd
3
2018
Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation. Zbl 1358.35164
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Domingos Cavalcanti, Valéria N.; Tebou, Louis
6
2017
General decay rate estimates and numerical analysis for a transmission problem with locally distributed nonlinear damping. Zbl 1373.65067
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Rosier, Carole; Dias Silva, Flávio R.
1
2017
Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions. Zbl 1373.35285
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Lasiecka, Irena; Lefler, Christopher
9
2016
Uniform decay rate estimates for Schrödinger and plate equations with nonlinear locally distributed damping. Zbl 1310.58026
Bortot, C. A.; Cavalcanti, M. M.; Corrêa, W. J.; Domingos Cavalcanti, V. N.
20
2013

Citations by Year