×

zbMATH — the first resource for mathematics

Dajić, Alegra

Compute Distance To:
Author ID: dajic.alegra Recent zbMATH articles by "Dajić, Alegra"
Published as: Dajić, A.; Dajić, Alegra
Documents Indexed: 7 Publications since 2006

Publications by Year

Citations contained in zbMATH

7 Publications have been cited 108 times in 80 Documents Cited by Year
Positive solutions to the equations \(AX=C\) and \(XB=D\) for Hilbert space operators. Zbl 1120.47009
Dajić, Alegra; Koliha, J. J.
34
2007
The weighted \(g\)-Drazin inverse for operators. Zbl 1123.47002
Dajić, Alegra; Koliha, J. J.
24
2007
Equations \(ax = c\) and \(xb = d\) in rings and rings with involution with applications to Hilbert space operators. Zbl 1149.47011
Dajić, Alegra; Koliha, J. J.
22
2008
Positive and real-positive solutions to the equation \(axa^*=c\) in \(C^*\)-algebras. Zbl 1180.47014
Cvetković-Ilić, D.; Dajić, Alegra; Koliha, J. J.
19
2007
The \(\sigma g\)-Drazin inverse and the generalized Mbekhta decomposition. Zbl 1144.46043
Dajić, A.; Koliha, J. J.
5
2007
Common solutions of linear equations in a ring, with applications. Zbl 1326.15021
Dajić, Alegra
2
2015
The weighted \(g\)-Drazin inverse for operators. Zbl 1111.47004
Dajić, A.; Koliha, J. J.
2
2006
Common solutions of linear equations in a ring, with applications. Zbl 1326.15021
Dajić, Alegra
2
2015
Equations \(ax = c\) and \(xb = d\) in rings and rings with involution with applications to Hilbert space operators. Zbl 1149.47011
Dajić, Alegra; Koliha, J. J.
22
2008
Positive solutions to the equations \(AX=C\) and \(XB=D\) for Hilbert space operators. Zbl 1120.47009
Dajić, Alegra; Koliha, J. J.
34
2007
The weighted \(g\)-Drazin inverse for operators. Zbl 1123.47002
Dajić, Alegra; Koliha, J. J.
24
2007
Positive and real-positive solutions to the equation \(axa^*=c\) in \(C^*\)-algebras. Zbl 1180.47014
Cvetković-Ilić, D.; Dajić, Alegra; Koliha, J. J.
19
2007
The \(\sigma g\)-Drazin inverse and the generalized Mbekhta decomposition. Zbl 1144.46043
Dajić, A.; Koliha, J. J.
5
2007
The weighted \(g\)-Drazin inverse for operators. Zbl 1111.47004
Dajić, A.; Koliha, J. J.
2
2006

Citations by Year