×

zbMATH — the first resource for mathematics

El-Moneam, M. A.

Compute Distance To:
Author ID: el-moneam.m-a Recent zbMATH articles by "El-Moneam, M. A."
Published as: El-Moneam, M. A.
Documents Indexed: 23 Publications since 2005

Publications by Year

Citations contained in zbMATH

22 Publications have been cited 108 times in 43 Documents Cited by Year
On the rational recursive sequence \(x_{n+1}=ax_n-bx_n/(cx_n-dx_{n-k})\). Zbl 1149.39011
Zayed, E. M. E.; El-Moneam, M. A.
18
2008
On the rational recursive sequence \(x_{n+1}=(D+\alpha x_n+\beta x_{n-1}+\gamma c_{n-2})/(Ax_n+Bx_{n-1}+Cx_{n-2})\). Zbl 1083.39014
Zayed, E. M. E.; El-Moneam, M. A.
13
2005
On the global attractivity of two nonlinear difference equations. Zbl 1290.37007
Zayed, E. M. E.; El-Moneam, M. A.
8
2011
On the rational recursive sequence \(x_{n+1}=\Big ( A+\sum _{i=0}^{k}\alpha _{i}x_{n-i}\Big ) \Big / \sum _{i=0}^{k}\beta _{i}x_{n-i}\). Zbl 1199.39025
Zayed, E. M. E.; El-Moneam, M. A.
8
2008
On the rational recursive sequence \(x_{n+1}=Ax_n+(\beta x_n+\gamma x_{n-k})/(Bx_n+Cx_{n-k})\). Zbl 1187.39014
Zayed, E. M. E.; El-Moneam, M. A.
6
2009
On the rational recursive sequence \(x_{n+1}=\frac {\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}} {Ax_b+ Bx_{n-1}+ Cx_{n-2}+ Dx_{n-3}}\). Zbl 1106.39016
Zayed, E. M. E.; El-Moneam, M. A.
6
2006
On the rational recursive sequence \(X_{N+1}=\gamma X_{N-K}+(AX_N+BX_{N-K})/(CX_N-DX_{N-K})\). Zbl 1217.39017
Zayed, E. M. E.; El-Moneam, M. A.
5
2010
On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\). Zbl 1204.39008
Zayed, E. M. E.; El-Moneam, M. A.
5
2010
Dynamics of the rational difference equation \( x_{x+1} = {\gamma x}_n + \frac{{\alpha x}_{n-1} + {\beta x}_{n-k}}{{Ax}_{n-1} + Bx_{n-k}}\). Zbl 1301.39007
Zayed, E. M. E.; El-Moneam, M. A.
4
2014
On study of the asymptotic behavior of some rational difference equations. Zbl 1282.39002
El-Moneam, M. A.; Alamoudy, S. O.
4
2014
On the qualitative study of the nonlinear difference equation \(x_{n+1}=\frac{\alpha x_{n-\sigma}}{\beta+\gamma x^ p_{n-\tau}}\). Zbl 1296.39007
Zayed, E. M. E.; El-Moneam, M. A.
4
2013
On the rational recursive two sequences \(x_{n+1}=ax_{n-k}+bx_{n-k}/(cx_n+\delta dx_{n-k})\). Zbl 1227.39009
Zayed, E. M. E.; El-Moneam, M. A.
4
2010
On the rational recursive sequence \(x_{n+1}=(A+\sum_{i=0}^{k}\alpha _{i}x_{n - i})/(B+\sum _{i=0}^{k}\beta _{i}x_{n - i})\). Zbl 1144.39014
Zayed, E. M. E.; El-Moneam, M. A.
4
2007
Global stability of a higher-order difference equation. Zbl 1374.39021
Ibrahim, T. F.; El-Moneam, M. A.
3
2017
On the dynamics of the nonlinear rational difference equation \(x_{n+1}=Ax_{n}+Bx_{n-k}+Cx_{n-l}+\frac{bx_{n-k}}{dx{n-k}-ex{n-1}}\). Zbl 1328.39002
El-Moneam, M. A.; Zayed, E. M. E.
3
2015
On the rational recursive sequence \( x_{n+1}=\dfrac {\alpha _{0}x_{n}+\alpha _{1}x_{n-l}+\alpha _{2}x_{n-k}} {\beta _{0}x_{n}+\beta _{1}x_{n-l}+\beta _{2}x_{n-k}} \). Zbl 1224.39015
Zayed, E. M. E.; El-Moneam, M. A.
3
2010
Dynamics of the rational difference equation \(x_{n+1}=Ax_n+Bx_{n-k}+Cx_{n-l}+\frac{bx_nx_{n-k}x_{n-l}}{dx_{n-k}-ex_{n-l}}\). Zbl 1302.39019
El-Moneam, M. A.; Zayed, E. M. E.
2
2014
On the rational recursive sequence \(x_{n+1}=\frac{A+\alpha_0x_n+\alpha_1x_{n-\sigma}}{B+\beta_0x_n+\beta_1x_{n-\tau}}\). Zbl 1221.39016
Zayed, E. M. E.; El-Moneam, M. A.
2
2011
On the rational recursive sequence \(x_{n+1}=\frac{\alpha + \beta x_{n-k}}{\gamma-x_{n}}\). Zbl 1181.39014
Zayed, E. M. E.; El-Moneam, M. A.
2
2009
Some oscillation criteria for second order nonlinear functional ordinary differential equations. Zbl 1150.34024
El-Moneam, M. A.; Zayed, E. M. E.
2
2007
On the rational difference equation \(y_{{n+1}}={\frac{\alpha_{0}y_{{n}}+\alpha_{1}y_{{n-p}}+\alpha_{2}y_{{n-q}} +\alpha_{3}y_{{n-r}}+\alpha_{4}y_{{n-s}}}{\beta_{0}y_{{n}}+\beta_{1}y_{{n-p}}+\beta_{2}y_{{n-q}}+\beta_{3}y_{{n-r}}+\beta_{4}y_{{n-s}}}}\). Zbl 1438.39006
Alotaibi, A. M.; El-Moneam, M. A.; Noorani, M. S. M.
1
2018
On the solutions of a system of third-order rational difference equations. Zbl 1417.39010
Alotaibi, A. M.; Noorani, M. S. M.; El-Moneam, M. A.
1
2018
On the rational difference equation \(y_{{n+1}}={\frac{\alpha_{0}y_{{n}}+\alpha_{1}y_{{n-p}}+\alpha_{2}y_{{n-q}} +\alpha_{3}y_{{n-r}}+\alpha_{4}y_{{n-s}}}{\beta_{0}y_{{n}}+\beta_{1}y_{{n-p}}+\beta_{2}y_{{n-q}}+\beta_{3}y_{{n-r}}+\beta_{4}y_{{n-s}}}}\). Zbl 1438.39006
Alotaibi, A. M.; El-Moneam, M. A.; Noorani, M. S. M.
1
2018
On the solutions of a system of third-order rational difference equations. Zbl 1417.39010
Alotaibi, A. M.; Noorani, M. S. M.; El-Moneam, M. A.
1
2018
Global stability of a higher-order difference equation. Zbl 1374.39021
Ibrahim, T. F.; El-Moneam, M. A.
3
2017
On the dynamics of the nonlinear rational difference equation \(x_{n+1}=Ax_{n}+Bx_{n-k}+Cx_{n-l}+\frac{bx_{n-k}}{dx{n-k}-ex{n-1}}\). Zbl 1328.39002
El-Moneam, M. A.; Zayed, E. M. E.
3
2015
Dynamics of the rational difference equation \( x_{x+1} = {\gamma x}_n + \frac{{\alpha x}_{n-1} + {\beta x}_{n-k}}{{Ax}_{n-1} + Bx_{n-k}}\). Zbl 1301.39007
Zayed, E. M. E.; El-Moneam, M. A.
4
2014
On study of the asymptotic behavior of some rational difference equations. Zbl 1282.39002
El-Moneam, M. A.; Alamoudy, S. O.
4
2014
Dynamics of the rational difference equation \(x_{n+1}=Ax_n+Bx_{n-k}+Cx_{n-l}+\frac{bx_nx_{n-k}x_{n-l}}{dx_{n-k}-ex_{n-l}}\). Zbl 1302.39019
El-Moneam, M. A.; Zayed, E. M. E.
2
2014
On the qualitative study of the nonlinear difference equation \(x_{n+1}=\frac{\alpha x_{n-\sigma}}{\beta+\gamma x^ p_{n-\tau}}\). Zbl 1296.39007
Zayed, E. M. E.; El-Moneam, M. A.
4
2013
On the global attractivity of two nonlinear difference equations. Zbl 1290.37007
Zayed, E. M. E.; El-Moneam, M. A.
8
2011
On the rational recursive sequence \(x_{n+1}=\frac{A+\alpha_0x_n+\alpha_1x_{n-\sigma}}{B+\beta_0x_n+\beta_1x_{n-\tau}}\). Zbl 1221.39016
Zayed, E. M. E.; El-Moneam, M. A.
2
2011
On the rational recursive sequence \(X_{N+1}=\gamma X_{N-K}+(AX_N+BX_{N-K})/(CX_N-DX_{N-K})\). Zbl 1217.39017
Zayed, E. M. E.; El-Moneam, M. A.
5
2010
On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\). Zbl 1204.39008
Zayed, E. M. E.; El-Moneam, M. A.
5
2010
On the rational recursive two sequences \(x_{n+1}=ax_{n-k}+bx_{n-k}/(cx_n+\delta dx_{n-k})\). Zbl 1227.39009
Zayed, E. M. E.; El-Moneam, M. A.
4
2010
On the rational recursive sequence \( x_{n+1}=\dfrac {\alpha _{0}x_{n}+\alpha _{1}x_{n-l}+\alpha _{2}x_{n-k}} {\beta _{0}x_{n}+\beta _{1}x_{n-l}+\beta _{2}x_{n-k}} \). Zbl 1224.39015
Zayed, E. M. E.; El-Moneam, M. A.
3
2010
On the rational recursive sequence \(x_{n+1}=Ax_n+(\beta x_n+\gamma x_{n-k})/(Bx_n+Cx_{n-k})\). Zbl 1187.39014
Zayed, E. M. E.; El-Moneam, M. A.
6
2009
On the rational recursive sequence \(x_{n+1}=\frac{\alpha + \beta x_{n-k}}{\gamma-x_{n}}\). Zbl 1181.39014
Zayed, E. M. E.; El-Moneam, M. A.
2
2009
On the rational recursive sequence \(x_{n+1}=ax_n-bx_n/(cx_n-dx_{n-k})\). Zbl 1149.39011
Zayed, E. M. E.; El-Moneam, M. A.
18
2008
On the rational recursive sequence \(x_{n+1}=\Big ( A+\sum _{i=0}^{k}\alpha _{i}x_{n-i}\Big ) \Big / \sum _{i=0}^{k}\beta _{i}x_{n-i}\). Zbl 1199.39025
Zayed, E. M. E.; El-Moneam, M. A.
8
2008
On the rational recursive sequence \(x_{n+1}=(A+\sum_{i=0}^{k}\alpha _{i}x_{n - i})/(B+\sum _{i=0}^{k}\beta _{i}x_{n - i})\). Zbl 1144.39014
Zayed, E. M. E.; El-Moneam, M. A.
4
2007
Some oscillation criteria for second order nonlinear functional ordinary differential equations. Zbl 1150.34024
El-Moneam, M. A.; Zayed, E. M. E.
2
2007
On the rational recursive sequence \(x_{n+1}=\frac {\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}} {Ax_b+ Bx_{n-1}+ Cx_{n-2}+ Dx_{n-3}}\). Zbl 1106.39016
Zayed, E. M. E.; El-Moneam, M. A.
6
2006
On the rational recursive sequence \(x_{n+1}=(D+\alpha x_n+\beta x_{n-1}+\gamma c_{n-2})/(Ax_n+Bx_{n-1}+Cx_{n-2})\). Zbl 1083.39014
Zayed, E. M. E.; El-Moneam, M. A.
13
2005

Citations by Year