×
Compute Distance To:
Author ID: goedert.joao Recent zbMATH articles by "Goedert, João"
Published as: Goedert, J.; Goedert, João; Goedert, Joao
Documents Indexed: 17 Publications since 1986
Co-Authors: 4 Co-Authors with 16 Joint Publications
76 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

12 Publications have been cited 60 times in 44 Documents Cited by Year
Generalized Hamiltonian structures for systems in three dimensions with a rescalable constant of motion. Zbl 0848.58022
Goedert, J.; Haas, F.; Hua, D.; Feix, M. R.; Cairó, L.
15
1994
On the generalized Hamiltonian structure of 3D dynamical systems. Zbl 1020.35533
Haas, F.; Goedert, J.
12
1995
Rational functions of momentum as invariants for one-dimensional, time- dependent potentials: Basic theory. Zbl 0626.70015
Goedert, João; Lewis, H. Ralph
8
1987
Rational functions of momentum as invariants for one-dimensional, time- dependent potentials: Two- and three-resonance cases. Zbl 0626.70016
Lewis, H. Ralph; Goedert, João
5
1987
One-dimensional nonautonomous dynamical systems with exact transcendental invariants. Zbl 0761.58060
Pereira, L. G.; Goedert, J.
5
1992
On the Lie symmetries of a class of generalized Ermakov systems. Zbl 0946.37039
Goedert, J.; Haas, F.
4
1998
Noether symmetries for two-dimensional charged particle motion. Zbl 0952.78007
Haas, F.; Goedert, J.
3
1999
Dynamical symmetries and the Ermakov invariant. Zbl 0972.70026
Haas, F.; Goedert, J.
3
2001
On the linearization of the generalized Ermakov systems. Zbl 0953.70017
Haas, F.; Goedert, J.
2
1999
On the Hamiltonian structure of Ermakov systems. Zbl 0900.70246
Haas, F.; Goedert, J.
1
1996
Lie symmetries for two-dimensional charged-particle motion. Zbl 0979.78004
Haas, F.; Goedert, J.
1
2000
Lie point symmetries for reduced Ermakov systems. Zbl 1123.35303
Haas, F.; Goedert, J.
1
2004
Lie point symmetries for reduced Ermakov systems. Zbl 1123.35303
Haas, F.; Goedert, J.
1
2004
Dynamical symmetries and the Ermakov invariant. Zbl 0972.70026
Haas, F.; Goedert, J.
3
2001
Lie symmetries for two-dimensional charged-particle motion. Zbl 0979.78004
Haas, F.; Goedert, J.
1
2000
Noether symmetries for two-dimensional charged particle motion. Zbl 0952.78007
Haas, F.; Goedert, J.
3
1999
On the linearization of the generalized Ermakov systems. Zbl 0953.70017
Haas, F.; Goedert, J.
2
1999
On the Lie symmetries of a class of generalized Ermakov systems. Zbl 0946.37039
Goedert, J.; Haas, F.
4
1998
On the Hamiltonian structure of Ermakov systems. Zbl 0900.70246
Haas, F.; Goedert, J.
1
1996
On the generalized Hamiltonian structure of 3D dynamical systems. Zbl 1020.35533
Haas, F.; Goedert, J.
12
1995
Generalized Hamiltonian structures for systems in three dimensions with a rescalable constant of motion. Zbl 0848.58022
Goedert, J.; Haas, F.; Hua, D.; Feix, M. R.; Cairó, L.
15
1994
One-dimensional nonautonomous dynamical systems with exact transcendental invariants. Zbl 0761.58060
Pereira, L. G.; Goedert, J.
5
1992
Rational functions of momentum as invariants for one-dimensional, time- dependent potentials: Basic theory. Zbl 0626.70015
Goedert, João; Lewis, H. Ralph
8
1987
Rational functions of momentum as invariants for one-dimensional, time- dependent potentials: Two- and three-resonance cases. Zbl 0626.70016
Lewis, H. Ralph; Goedert, João
5
1987

Citations by Year