×

Holshouser, Arthur L.

Compute Distance To:
Author ID: holshouser.arthur-l Recent zbMATH articles by "Holshouser, Arthur L."
Published as: Holshouser, Arthur; Holshouser, Arthur L.
Documents Indexed: 22 Publications since 2001
Co-Authors: 9 Co-Authors with 22 Joint Publications
201 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

10 Publications have been cited 29 times in 18 Documents Cited by Year
Dynamic one-pile Nim. Zbl 1093.91013
Holshouser, Arthur; Reiter, Harold; Rudzinski, James
12
2003
Dynamic one-pile blocking Nim. Zbl 1094.91012
Flammenkamp, Achim; Holshouser, Arthur; Reiter, Harold
8
2003
Win-loss sequences for generalized roundrobin tournaments. Zbl 1247.05090
Holshouser, Arthur; Moon, John W.; Reiter, Harold
2
2011
Pilesize dynamic one-pile Nim and Beatty’s theorem. Zbl 1081.05005
Holshouser, Arthur; Reiter, Harold; Rudzinski, James
1
2004
Groups that distribute over mathematical structures. Zbl 1168.22017
Holshouser, Arthur; Reiter, H.
1
2009
Groups that distribute over \(n\)-stars. Zbl 1181.22023
Reiter, Harold; Holshouser, Arthur
1
2009
A generalization of Beatty’s theorem. Zbl 1010.11010
Holshouser, Arthur; Reiter, Harold
1
2001
One pile Nim with arbitrary move function. Zbl 1047.91009
Holshouser, Arthur; Reiter, Harold
1
2003
The commutative equihoop and the card game SET. Zbl 1384.20052
Holshouser, Arthur; Klein, Ben; Reiter, Harold
1
2015
Win sequences for round-robin tournaments. Zbl 1360.91045
Holshouser, Arthur; Reiter, Harold
1
2009
The commutative equihoop and the card game SET. Zbl 1384.20052
Holshouser, Arthur; Klein, Ben; Reiter, Harold
1
2015
Win-loss sequences for generalized roundrobin tournaments. Zbl 1247.05090
Holshouser, Arthur; Moon, John W.; Reiter, Harold
2
2011
Groups that distribute over mathematical structures. Zbl 1168.22017
Holshouser, Arthur; Reiter, H.
1
2009
Groups that distribute over \(n\)-stars. Zbl 1181.22023
Reiter, Harold; Holshouser, Arthur
1
2009
Win sequences for round-robin tournaments. Zbl 1360.91045
Holshouser, Arthur; Reiter, Harold
1
2009
Pilesize dynamic one-pile Nim and Beatty’s theorem. Zbl 1081.05005
Holshouser, Arthur; Reiter, Harold; Rudzinski, James
1
2004
Dynamic one-pile Nim. Zbl 1093.91013
Holshouser, Arthur; Reiter, Harold; Rudzinski, James
12
2003
Dynamic one-pile blocking Nim. Zbl 1094.91012
Flammenkamp, Achim; Holshouser, Arthur; Reiter, Harold
8
2003
One pile Nim with arbitrary move function. Zbl 1047.91009
Holshouser, Arthur; Reiter, Harold
1
2003
A generalization of Beatty’s theorem. Zbl 1010.11010
Holshouser, Arthur; Reiter, Harold
1
2001

Citations by Year