×

zbMATH — the first resource for mathematics

Horváth, Eszter K.

Compute Distance To:
Author ID: horvath.eszter-k Recent zbMATH articles by "Horváth, Eszter K."
Published as: Horváth, Eszter K.; Horváth, E.; Horváth, E. K.; Horvath, E.; Horvath, Eszter K.; Horváth, Eszter
Documents Indexed: 40 Publications since 1973

Publications by Year

Citations contained in zbMATH Open

26 Publications have been cited 77 times in 39 Documents Cited by Year
Congruence distributivity and modularity permit tolerances. Zbl 1043.08002
Czédli, Gábor; Horváth, Eszter K.
8
2002
On tolerance lattices of algebras in congruence modular varieties. Zbl 1049.08007
Czédli, G.; Horváth, E. K.; Radeleczki, S.
7
2003
Trapezoid lemma and congruence distributivity. Zbl 1058.08007
Chajda, Ivan; Czédli, Gábor; Horváth, Eszter K.
7
2003
Optimal Mal’tsev conditions for congruence modular varieties. Zbl 1079.08005
Czédli, Gábor; Horváth, Eszter K.; Lipparini, Paolo
6
2005
A triangular scheme for congruence distributivity. Zbl 0997.08001
Chajda, Ivan; Horváth, Eszter K.
5
2002
The number of triangular islands on a triangular grid. Zbl 1199.05012
Horváth, Eszter K.; Németh, Zoltán; Pluhár, Gabriella
5
2009
The shifting lemma and shifting lattice identities. Zbl 1091.08006
Chajda, Ivan; Czédli, Gábor; Horváth, Eszter K.
4
2003
Invariance groups of finite functions and orbit equivalence of permutation groups. Zbl 1319.06003
Horváth, Eszter K.; Makay, Géza; Pöschel, Reinhard; Waldhauser, Tamás
4
2015
On some questions concerning subnormally monomial groups. Zbl 0861.20011
Horváth, E.
3
1995
All congruence lattice identities implying modularity have Mal’tsev conditions. Zbl 1091.08007
Czédli, Gábor; Horváth, Eszter K.
3
2003
Notes on CD-independent subsets. Zbl 1299.06002
Horváth, Eszter K.; Radeleczki, Sándor
3
2012
Elementary proof techniques for the maximum number of islands. Zbl 1227.05006
Barát, János; Hajnal, Péter; Horváth, Eszter K.
3
2011
A scheme for congruence semidistributivity. Zbl 1057.08001
Chajda, Ivan; Horváth, Eszter K.
2
2003
Isotone lattice-valued Boolean functions and cuts. Zbl 1363.06019
Horváth, Eszter K.; Šešelja, Branimir; Tepavčevič, Andreja
2
2015
The number of square islands on a rectangular sea. Zbl 1224.05025
Horváth, Eszter K.; Horváth, Gábor; Németh, Zoltán; Szabó, Csaba
2
2010
Cut approach to islands in rectangular fuzzy relations. Zbl 1214.03039
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
2
2010
A note on lattice variant of thresholdness of Boolean functions. Zbl 1389.06034
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
2
2016
Normal \(\pi\)-complement theorems. Zbl 0921.20023
Corrádi, K.; Horváth, E.
1
1998
Steps towards an elementary proof of Frobenius’ theorem. Zbl 0856.20017
Corrádi, K.; Horváth, E.
1
1996
Invariance groups of threshold functions. Zbl 0811.94044
Horváth, E. K.
1
1994
Cardinality of height function’s range in case of maximally many rectangular islands – computed by cuts. Zbl 1258.05124
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
1
2013
Cut approach to invariance groups of lattice-valued functions. Zbl 1420.06022
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
1
2017
A general framework for island systems. Zbl 1374.06003
Foldes, Stephan; Horváth, Eszter K.; Radeleczki, Sándor; Waldhauser, Tamás
1
2015
Islands: from coding theory to enumerative combinatorics and to lattice theory – overview and open problems. Zbl 1299.05309
Horváth, Eszter K.
1
2013
A note on lattices with many sublattices. Zbl 1449.06004
Czédli, Gábor; Horváth, Eszter K.
1
2019
Cuts of poset-valued functions in the framework of residuated maps. Zbl 1464.03057
Horváth, Eszter K.; Radeleczki, Sándor; Šešelja, Branimir; Tepavčević, Andreja
1
2020
Cuts of poset-valued functions in the framework of residuated maps. Zbl 1464.03057
Horváth, Eszter K.; Radeleczki, Sándor; Šešelja, Branimir; Tepavčević, Andreja
1
2020
A note on lattices with many sublattices. Zbl 1449.06004
Czédli, Gábor; Horváth, Eszter K.
1
2019
Cut approach to invariance groups of lattice-valued functions. Zbl 1420.06022
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
1
2017
A note on lattice variant of thresholdness of Boolean functions. Zbl 1389.06034
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
2
2016
Invariance groups of finite functions and orbit equivalence of permutation groups. Zbl 1319.06003
Horváth, Eszter K.; Makay, Géza; Pöschel, Reinhard; Waldhauser, Tamás
4
2015
Isotone lattice-valued Boolean functions and cuts. Zbl 1363.06019
Horváth, Eszter K.; Šešelja, Branimir; Tepavčevič, Andreja
2
2015
A general framework for island systems. Zbl 1374.06003
Foldes, Stephan; Horváth, Eszter K.; Radeleczki, Sándor; Waldhauser, Tamás
1
2015
Cardinality of height function’s range in case of maximally many rectangular islands – computed by cuts. Zbl 1258.05124
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
1
2013
Islands: from coding theory to enumerative combinatorics and to lattice theory – overview and open problems. Zbl 1299.05309
Horváth, Eszter K.
1
2013
Notes on CD-independent subsets. Zbl 1299.06002
Horváth, Eszter K.; Radeleczki, Sándor
3
2012
Elementary proof techniques for the maximum number of islands. Zbl 1227.05006
Barát, János; Hajnal, Péter; Horváth, Eszter K.
3
2011
The number of square islands on a rectangular sea. Zbl 1224.05025
Horváth, Eszter K.; Horváth, Gábor; Németh, Zoltán; Szabó, Csaba
2
2010
Cut approach to islands in rectangular fuzzy relations. Zbl 1214.03039
Horváth, Eszter K.; Šešelja, Branimir; Tepavčević, Andreja
2
2010
The number of triangular islands on a triangular grid. Zbl 1199.05012
Horváth, Eszter K.; Németh, Zoltán; Pluhár, Gabriella
5
2009
Optimal Mal’tsev conditions for congruence modular varieties. Zbl 1079.08005
Czédli, Gábor; Horváth, Eszter K.; Lipparini, Paolo
6
2005
On tolerance lattices of algebras in congruence modular varieties. Zbl 1049.08007
Czédli, G.; Horváth, E. K.; Radeleczki, S.
7
2003
Trapezoid lemma and congruence distributivity. Zbl 1058.08007
Chajda, Ivan; Czédli, Gábor; Horváth, Eszter K.
7
2003
The shifting lemma and shifting lattice identities. Zbl 1091.08006
Chajda, Ivan; Czédli, Gábor; Horváth, Eszter K.
4
2003
All congruence lattice identities implying modularity have Mal’tsev conditions. Zbl 1091.08007
Czédli, Gábor; Horváth, Eszter K.
3
2003
A scheme for congruence semidistributivity. Zbl 1057.08001
Chajda, Ivan; Horváth, Eszter K.
2
2003
Congruence distributivity and modularity permit tolerances. Zbl 1043.08002
Czédli, Gábor; Horváth, Eszter K.
8
2002
A triangular scheme for congruence distributivity. Zbl 0997.08001
Chajda, Ivan; Horváth, Eszter K.
5
2002
Normal \(\pi\)-complement theorems. Zbl 0921.20023
Corrádi, K.; Horváth, E.
1
1998
Steps towards an elementary proof of Frobenius’ theorem. Zbl 0856.20017
Corrádi, K.; Horváth, E.
1
1996
On some questions concerning subnormally monomial groups. Zbl 0861.20011
Horváth, E.
3
1995
Invariance groups of threshold functions. Zbl 0811.94044
Horváth, E. K.
1
1994

Citations by Year