×

zbMATH — the first resource for mathematics

Manhart, Friedrich

Compute Distance To:
Author ID: manhart.friedrich Recent zbMATH articles by "Manhart, Friedrich"
Published as: Manhart, F.; Manhart, Friedrich
Documents Indexed: 23 Publications since 1982, including 2 Books
Reviewing Activity: 171 Reviews

Publications by Year

Citations contained in zbMATH

11 Publications have been cited 35 times in 29 Documents Cited by Year
The convolution of a paraboloid and a parametrized surface. Zbl 1056.51016
Peternell, Martin; Manhart, Friedrich
7
2003
Relativgeometrische Kennzeichnungen euklidischer Hypersphären. (Characterizations of Euclidean hyperspheres in relative geometry). Zbl 0733.53006
Manhart, Friedrich
5
1989
Bonnet-Thomsen surfaces in Minkowski geometry. Zbl 1327.53011
Manhart, Friedrich
4
2015
Affine rotational surfaces with vanishing affine curvature. Zbl 1063.53011
Manhart, Friedrich
4
2004
Die Affinminimalrückungsflächen. Zbl 0587.53009
Manhart, Friedrich
4
1985
Surfaces with affine rotational symmetry and flat affine metric in \(\mathbb{R}^3\). Zbl 1057.53011
Manhart, F.
3
2003
Uneigentliche Relativsphären, die Regelflächen oder Rückungsflächen sind. (Improper relative spheres which are ruled surfaces or surfaces of translation). Zbl 0641.53004
Manhart, Friedrich
2
1988
Uneigentliche Relativsphären im dreidimensionalen euklidischen Raum, welche Drehflächen sind. (Improper relative spheres in the three- dimensional Euclidean space which are surfaces of revolution). Zbl 0625.53002
Manhart, Friedrich
2
1986
Zur relativen Differentialgeometrie der Hyperflächen. Zbl 0536.53017
Manhart, Friedrich
2
1982
Minkowski minimal surfaces in \({\mathbb R}^3_1\) with minimal focal surfaces. Zbl 1185.53012
Manhart, Friedrich
1
2009
Zur Differentialgeometrie der 2. Grundform. Zbl 0544.53003
Manhart, Friedrich
1
1984
Bonnet-Thomsen surfaces in Minkowski geometry. Zbl 1327.53011
Manhart, Friedrich
4
2015
Minkowski minimal surfaces in \({\mathbb R}^3_1\) with minimal focal surfaces. Zbl 1185.53012
Manhart, Friedrich
1
2009
Affine rotational surfaces with vanishing affine curvature. Zbl 1063.53011
Manhart, Friedrich
4
2004
The convolution of a paraboloid and a parametrized surface. Zbl 1056.51016
Peternell, Martin; Manhart, Friedrich
7
2003
Surfaces with affine rotational symmetry and flat affine metric in \(\mathbb{R}^3\). Zbl 1057.53011
Manhart, F.
3
2003
Relativgeometrische Kennzeichnungen euklidischer Hypersphären. (Characterizations of Euclidean hyperspheres in relative geometry). Zbl 0733.53006
Manhart, Friedrich
5
1989
Uneigentliche Relativsphären, die Regelflächen oder Rückungsflächen sind. (Improper relative spheres which are ruled surfaces or surfaces of translation). Zbl 0641.53004
Manhart, Friedrich
2
1988
Uneigentliche Relativsphären im dreidimensionalen euklidischen Raum, welche Drehflächen sind. (Improper relative spheres in the three- dimensional Euclidean space which are surfaces of revolution). Zbl 0625.53002
Manhart, Friedrich
2
1986
Die Affinminimalrückungsflächen. Zbl 0587.53009
Manhart, Friedrich
4
1985
Zur Differentialgeometrie der 2. Grundform. Zbl 0544.53003
Manhart, Friedrich
1
1984
Zur relativen Differentialgeometrie der Hyperflächen. Zbl 0536.53017
Manhart, Friedrich
2
1982

Citations by Year