×
Compute Distance To:
Author ID: mylnikov.a-l Recent zbMATH articles by "Myl’nikov, A. L."
Published as: Myl’nikov, A. L.
Documents Indexed: 11 Publications since 1999
Co-Authors: 2 Co-Authors with 2 Joint Publications
11 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

7 Publications have been cited 7 times in 2 Documents Cited by Year
Estimation of the order of a group generated by a twisted subset. Zbl 1205.20028
Belyaev, V. V.; Myl’nikov, A. L.
1
2008
Tensor-geometric methods for problems of the circuit theory. Zbl 1181.78005
Mylnikov, A.
1
2008
Nilpotency of the derived subgroup of a finite twisted group. Zbl 1139.20020
Myl’nikov, A. L.
1
2006
Finite tangled groups. Zbl 1153.20017
Myl’nikov, A. L.
1
2007
Minimal non-group-like twisted subsets with involutions. Zbl 1153.20303
Myl’nikov, A. L.
1
2007
Minimal non-group twisted subsets containing involutions. Zbl 1155.20024
Myl’nikov, A. L.
1
2007
Weinstein function for oscillation systems with finite number of degrees of freedom. Zbl 1031.94021
Mylnikov, A.
1
1999
Estimation of the order of a group generated by a twisted subset. Zbl 1205.20028
Belyaev, V. V.; Myl’nikov, A. L.
1
2008
Tensor-geometric methods for problems of the circuit theory. Zbl 1181.78005
Mylnikov, A.
1
2008
Finite tangled groups. Zbl 1153.20017
Myl’nikov, A. L.
1
2007
Minimal non-group-like twisted subsets with involutions. Zbl 1153.20303
Myl’nikov, A. L.
1
2007
Minimal non-group twisted subsets containing involutions. Zbl 1155.20024
Myl’nikov, A. L.
1
2007
Nilpotency of the derived subgroup of a finite twisted group. Zbl 1139.20020
Myl’nikov, A. L.
1
2006
Weinstein function for oscillation systems with finite number of degrees of freedom. Zbl 1031.94021
Mylnikov, A.
1
1999

Citations by Year