×
Compute Distance To:
Author ID: newton.rachel Recent zbMATH articles by "Newton, Rachel"
Published as: Newton, Rachel
External Links: MGP

Publications by Year

Citations contained in zbMATH Open

11 Publications have been cited 42 times in 33 Documents Cited by Year
The Hasse norm principle for abelian extensions. Zbl 1426.11127
Frei, Christopher; Loughran, Daniel; Newton, Rachel
10
2018
Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve. Zbl 1314.11042
Fisher, Tom; Newton, Rachel
8
2014
Transcendental Brauer groups of products of CM elliptic curves. Zbl 1398.14028
Newton, Rachel
6
2016
The proportion of failures of the Hasse norm principle. Zbl 1341.11037
Browning, T. D.; Newton, R.
6
2016
Strangely dual orbifold equivalence. I. Zbl 1375.14014
Ros Camacho, Ana; Newton, Rachel
4
2016
Bad reduction of genus three curves with complex multiplication. Zbl 1397.11102
Bouw, Irene; Cooley, Jenny; Lauter, Kristin; Lorenzo García, Elisa; Manes, Michelle; Newton, Rachel; Ozman, Ekin
3
2015
A bound on the primes of bad reduction for CM curves of genus \(3\). Zbl 07204745
Kılıçer, Pınar; Lauter, Kristin; Lorenzo García, Elisa; Newton, Rachel; Ozman, Ekin; Streng, Marco
1
2020
Shadow lines in the arithmetic of elliptic curves. Zbl 1401.11102
Balakrishnan, J. S.; Çiperiani, M.; Lang, J.; Mirza, B.; Newton, R.
1
2016
Non-ordinary curves with a Prym variety of low \(p\)-rank. Zbl 1451.14101
Celik, Turku Ozlum; Elias, Yara; Güneş, Burçin; Newton, Rachel; Ozman, Ekin; Pries, Rachel; Thomas, Lara
1
2018
Number fields with prescribed norms (with an appendix by Yonatan Harpaz and Olivier Wittenberg). Zbl 07523046
Frei, Christopher; Loughran, Daniel; Newton, Rachel
1
2022
Explicit methods for the Hasse norm principle and applications to \(A_n\) and \(S_n\) extensions. Zbl 07554746
Macedo, André; Newton, Rachel
1
2022
Number fields with prescribed norms (with an appendix by Yonatan Harpaz and Olivier Wittenberg). Zbl 07523046
Frei, Christopher; Loughran, Daniel; Newton, Rachel
1
2022
Explicit methods for the Hasse norm principle and applications to \(A_n\) and \(S_n\) extensions. Zbl 07554746
Macedo, André; Newton, Rachel
1
2022
A bound on the primes of bad reduction for CM curves of genus \(3\). Zbl 07204745
Kılıçer, Pınar; Lauter, Kristin; Lorenzo García, Elisa; Newton, Rachel; Ozman, Ekin; Streng, Marco
1
2020
The Hasse norm principle for abelian extensions. Zbl 1426.11127
Frei, Christopher; Loughran, Daniel; Newton, Rachel
10
2018
Non-ordinary curves with a Prym variety of low \(p\)-rank. Zbl 1451.14101
Celik, Turku Ozlum; Elias, Yara; Güneş, Burçin; Newton, Rachel; Ozman, Ekin; Pries, Rachel; Thomas, Lara
1
2018
Transcendental Brauer groups of products of CM elliptic curves. Zbl 1398.14028
Newton, Rachel
6
2016
The proportion of failures of the Hasse norm principle. Zbl 1341.11037
Browning, T. D.; Newton, R.
6
2016
Strangely dual orbifold equivalence. I. Zbl 1375.14014
Ros Camacho, Ana; Newton, Rachel
4
2016
Shadow lines in the arithmetic of elliptic curves. Zbl 1401.11102
Balakrishnan, J. S.; Çiperiani, M.; Lang, J.; Mirza, B.; Newton, R.
1
2016
Bad reduction of genus three curves with complex multiplication. Zbl 1397.11102
Bouw, Irene; Cooley, Jenny; Lauter, Kristin; Lorenzo García, Elisa; Manes, Michelle; Newton, Rachel; Ozman, Ekin
3
2015
Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve. Zbl 1314.11042
Fisher, Tom; Newton, Rachel
8
2014

Citations by Year