×

zbMATH — the first resource for mathematics

O’Malley, Matthew J.

Compute Distance To:
Author ID: omalley.matthew-j Recent zbMATH articles by "O'Malley, Matthew J."
Published as: O’Malley, M.; O’Malley, M. J.; O’Malley, Matthew; O’Malley, Matthew J.
Documents Indexed: 16 Publications since 1970

Publications by Year

Citations contained in zbMATH Open

14 Publications have been cited 53 times in 28 Documents Cited by Year
\(R\)-automorphisms of \(R[[X]]\). Zbl 0186.35503
O’Malley, Matthew J.
13
1970
\(R\)-endomorphisms of \(R[[X]]\). Zbl 0195.32902
O’Malley, Matthew J.; Wood, Craig
7
1970
\(R\)-endomorphisms of \(R[[X_1,\dots ,X_n]]\). Zbl 0368.13019
Gilmer, Robert; O’Malley, Matthew J.
5
1977
Isomorphic power series rings. Zbl 0235.13017
O’Malley, Matthew J.
5
1972
On the Weierstrass preparation theorem. Zbl 0234.13015
O’Malley, Matthew J.
4
1972
Some remarks on the formal power series ring. Zbl 0202.04801
O’Malley, Matthew J.
4
1971
On R-homomorphisms of power series rings. Zbl 0476.13016
Gilmer, Robert; O’Malley, Matthew
3
1981
Finite groups of \(R\)-automorphisms of \(R[[X]]\). Zbl 0257.13026
O’Malley, Matthew J.
3
1973
On \(n\)th roots of positive operators. Zbl 0443.47020
Brown, D. R.; O’Malley, M. J.
2
1980
Non-Noetherian rings for which each proper subring is Noetherian. Zbl 0247.16010
Gilmer, Robert; O’Malley, Matthew
2
1972
Rings whose proper subrings have property P. Zbl 0235.16015
Gilmer, Robert; Lea, Robert; O’Malley, Matthew J.
2
1972
Application of Kharitonov’s theorem to robustly increase the degree of Hurwitz polynomials. Zbl 0850.93685
Millett, A.; O’Malley, M.
1
1996
The role of eigenvalues in linear feature selection theory. Zbl 0379.62054
Brown, D. R.; O’Malley, M. J.
1
1977
A counter-example in linear feature selection theory. Zbl 0331.68063
Brown, D. R.; O’Malley, M. J.
1
1976
Application of Kharitonov’s theorem to robustly increase the degree of Hurwitz polynomials. Zbl 0850.93685
Millett, A.; O’Malley, M.
1
1996
On R-homomorphisms of power series rings. Zbl 0476.13016
Gilmer, Robert; O’Malley, Matthew
3
1981
On \(n\)th roots of positive operators. Zbl 0443.47020
Brown, D. R.; O’Malley, M. J.
2
1980
\(R\)-endomorphisms of \(R[[X_1,\dots ,X_n]]\). Zbl 0368.13019
Gilmer, Robert; O’Malley, Matthew J.
5
1977
The role of eigenvalues in linear feature selection theory. Zbl 0379.62054
Brown, D. R.; O’Malley, M. J.
1
1977
A counter-example in linear feature selection theory. Zbl 0331.68063
Brown, D. R.; O’Malley, M. J.
1
1976
Finite groups of \(R\)-automorphisms of \(R[[X]]\). Zbl 0257.13026
O’Malley, Matthew J.
3
1973
Isomorphic power series rings. Zbl 0235.13017
O’Malley, Matthew J.
5
1972
On the Weierstrass preparation theorem. Zbl 0234.13015
O’Malley, Matthew J.
4
1972
Non-Noetherian rings for which each proper subring is Noetherian. Zbl 0247.16010
Gilmer, Robert; O’Malley, Matthew
2
1972
Rings whose proper subrings have property P. Zbl 0235.16015
Gilmer, Robert; Lea, Robert; O’Malley, Matthew J.
2
1972
Some remarks on the formal power series ring. Zbl 0202.04801
O’Malley, Matthew J.
4
1971
\(R\)-automorphisms of \(R[[X]]\). Zbl 0186.35503
O’Malley, Matthew J.
13
1970
\(R\)-endomorphisms of \(R[[X]]\). Zbl 0195.32902
O’Malley, Matthew J.; Wood, Craig
7
1970

Citations by Year