×
Compute Distance To:
Author ID: peyraut.francois Recent zbMATH articles by "Peyraut, François"
Published as: Peyraut, François; Peyraut, F.; Peyrant, François
Documents Indexed: 13 Publications since 2001
Co-Authors: 11 Co-Authors with 11 Joint Publications
65 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

8 Publications have been cited 18 times in 13 Documents Cited by Year
Robust numerical analysis of homogeneous and non-homogeneous deformations. Zbl 1162.74007
Peyraut, F.; Feng, Z.-Q.; He, Q.-C.; Labed, N.
5
2009
Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies. Zbl 1211.74166
Feng, Zhi-Qiang; Peyraut, François; Labed, Nadia
4
2003
Orientation preservation and Newton-Raphson convergence in the case of an hyperelastic sphere subjected to an hydrostatic pressure. Zbl 1026.74074
Peyraut, François
2
2003
Finite deformations of Ogden’s materials under impact loading. Zbl 1160.74390
Feng, Z.-Q.; Peyraut, F.; He, Q.-C.
2
2006
A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization. Zbl 1225.74056
Harb, N.; Labed, N.; Domaszewski, M.; Peyraut, F.
2
2010
Orientation preservation and Newton-Raphson convergence for Blatz-Ko compressible hyperelastic model. (Préservation de l’orientation et convergence de Newton-Raphson avec le modèle hyperélastique compressible de Blatz-Ko.) Zbl 1054.74073
Peyrant, François; Labed, Nadia
1
2001
Loading restrictions for the Blatz-Ko hyperelastic model – application to a finite element analysis. Zbl 1141.74368
Peyraut, François
1
2004
Modeling of biological tissues with anisotropic hyperelastic laws – theoretical study and finite element analysis. (Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis.) Zbl 1312.74044
Peyraut, François; Renaud, Christine; Labed, Nadia; Feng, Zhi-Qiang
1
2009
A new parameter identification method of soft biological tissue combining genetic algorithm with analytical optimization. Zbl 1225.74056
Harb, N.; Labed, N.; Domaszewski, M.; Peyraut, F.
2
2010
Robust numerical analysis of homogeneous and non-homogeneous deformations. Zbl 1162.74007
Peyraut, F.; Feng, Z.-Q.; He, Q.-C.; Labed, N.
5
2009
Modeling of biological tissues with anisotropic hyperelastic laws – theoretical study and finite element analysis. (Modélisation de tissus biologiques en hyperélasticité anisotrope – Étude théorique et approche éléments finis.) Zbl 1312.74044
Peyraut, François; Renaud, Christine; Labed, Nadia; Feng, Zhi-Qiang
1
2009
Finite deformations of Ogden’s materials under impact loading. Zbl 1160.74390
Feng, Z.-Q.; Peyraut, F.; He, Q.-C.
2
2006
Loading restrictions for the Blatz-Ko hyperelastic model – application to a finite element analysis. Zbl 1141.74368
Peyraut, François
1
2004
Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies. Zbl 1211.74166
Feng, Zhi-Qiang; Peyraut, François; Labed, Nadia
4
2003
Orientation preservation and Newton-Raphson convergence in the case of an hyperelastic sphere subjected to an hydrostatic pressure. Zbl 1026.74074
Peyraut, François
2
2003
Orientation preservation and Newton-Raphson convergence for Blatz-Ko compressible hyperelastic model. (Préservation de l’orientation et convergence de Newton-Raphson avec le modèle hyperélastique compressible de Blatz-Ko.) Zbl 1054.74073
Peyrant, François; Labed, Nadia
1
2001

Citations by Year