×

zbMATH — the first resource for mathematics

Průša, Vít

Compute Distance To:
Author ID: prusa.vit Recent zbMATH articles by "Průša, Vít"
Published as: Průša, Vít; Pruša, Vít; Průša, V.
External Links: ORCID
Documents Indexed: 22 Publications since 2007, including 1 Book

Publications by Year

Citations contained in zbMATH Open

10 Publications have been cited 39 times in 39 Documents Cited by Year
Generalizations of the Navier-Stokes fluid from a new perspective. Zbl 1231.76073
Málek, J.; Průša, V.; Rajagopal, K. R.
14
2010
Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions. Zbl 1292.76007
Průša, Vít; Rajagopal, K. R.
6
2011
On the influence of boundary condition on stability of Hagen-Poiseuille flow. Zbl 1186.76641
Průša, Vít
4
2009
PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion. Zbl 1404.35346
Bulíček, Miroslav; Málek, Josef; Průša, Vít; Süli, Endre
4
2018
Further remarks on simple flows of fluids with pressure-dependent viscosities. Zbl 1206.35207
Hron, Jaroslav; Málek, Josef; Průša, Vít; Rajagopal, K. R.
3
2011
On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Zbl 1302.74003
Souček, Ondřej; Průša, Vít; Málek, Josef; Rajagopal, K. R.
2
2014
On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck-Boussinesq type approximations. Zbl 1452.76015
Průša, Vít; Rajagopal, K. R.
2
2013
Sufficient conditions for monotone linear stability of steady and oscillatory Hagen–Poiseuille flow. Zbl 1109.76021
Průša, Vít
2
2007
Squeeze flow of a piezoviscous fluid. Zbl 1410.76017
Řehoř, Martin; Pruša, Vít
1
2016
Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. Zbl 1428.76017
Janečka, Adam; Málek, Josef; Pruša, Vít; Tierra, Giordano
1
2019
Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. Zbl 1428.76017
Janečka, Adam; Málek, Josef; Pruša, Vít; Tierra, Giordano
1
2019
PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion. Zbl 1404.35346
Bulíček, Miroslav; Málek, Josef; Průša, Vít; Süli, Endre
4
2018
Squeeze flow of a piezoviscous fluid. Zbl 1410.76017
Řehoř, Martin; Pruša, Vít
1
2016
On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Zbl 1302.74003
Souček, Ondřej; Průša, Vít; Málek, Josef; Rajagopal, K. R.
2
2014
On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck-Boussinesq type approximations. Zbl 1452.76015
Průša, Vít; Rajagopal, K. R.
2
2013
Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions. Zbl 1292.76007
Průša, Vít; Rajagopal, K. R.
6
2011
Further remarks on simple flows of fluids with pressure-dependent viscosities. Zbl 1206.35207
Hron, Jaroslav; Málek, Josef; Průša, Vít; Rajagopal, K. R.
3
2011
Generalizations of the Navier-Stokes fluid from a new perspective. Zbl 1231.76073
Málek, J.; Průša, V.; Rajagopal, K. R.
14
2010
On the influence of boundary condition on stability of Hagen-Poiseuille flow. Zbl 1186.76641
Průša, Vít
4
2009
Sufficient conditions for monotone linear stability of steady and oscillatory Hagen–Poiseuille flow. Zbl 1109.76021
Průša, Vít
2
2007

Citations by Year