×

zbMATH — the first resource for mathematics

Sargsyan, Artsrun A.

Compute Distance To:
Author ID: sargsyan.artsrun-a Recent zbMATH articles by "Sargsyan, Artsrun A."
Published as: Sargsyan, A.; Sargsyan, A. A.; Sargsyan, Artsrun; Sargsyan, Artsrun A.
Documents Indexed: 22 Publications since 2004

Publications by Year

Citations contained in zbMATH Open

10 Publications have been cited 35 times in 20 Documents Cited by Year
On the universal function for the class \(L^{p}[0,1]\), \(p\in (0,1)\). Zbl 1333.42049
Grigoryan, M. G.; Sargsyan, A. A.
12
2016
The structure of universal functions for \(L^p\)-spaces, \(p\in(0,1)\). Zbl 1392.42027
Grigoryan, Martin G.; Sargsyan, Artsrun A.
5
2018
Universal function for a weighted space \(L^1_{\mu}[0,1]\). Zbl 1378.42015
Sargsyan, Artsrun; Grigoryan, Martin
5
2017
Non-linear approximation of continuous functions by the Faber-Schauder system. Zbl 1153.42014
Grigorian, M. G.; Sargsyan, A. A.
4
2008
On the universal function for weighted spaces \(L^p_{\mu}[0,1], p\geq1\). Zbl 1382.42016
Grigoryan, Martin; Grigoryan, Tigran; Sargsyan, Artsrun
2
2018
On the coefficients of the expansion of elements from \(C[0,1]\) space by Faber-Schauder system. Zbl 1229.42032
Grigoryan, M. G.; Sargsyan, A. A.
2
2011
Unconditional \(C\)-strong property of Faber-Schauder system. Zbl 1160.42316
Grigoryan, M. G.; Sargsyan, A. A.
2
2009
On the structure of universal functions for classes \(L^p[0,1)^2\), \(p\in(0,1)\), with respect to the double Walsh system. Zbl 1418.42044
Grigoryan, Martin; Sargsyan, Artsrun
1
2019
Quasiuniversal Fourier-Walsh series for the classes \(L^p[0, 1]\), \(p > 1\). Zbl 1409.42021
Sargsyan, A. A.
1
2018
On existence of a universal function for \(L^p[0, 1]\) with \(p\in(0, 1)\). Zbl 1361.42028
Grigoryan, Martin G.; Sargsyan, A. A.
1
2016
On the structure of universal functions for classes \(L^p[0,1)^2\), \(p\in(0,1)\), with respect to the double Walsh system. Zbl 1418.42044
Grigoryan, Martin; Sargsyan, Artsrun
1
2019
The structure of universal functions for \(L^p\)-spaces, \(p\in(0,1)\). Zbl 1392.42027
Grigoryan, Martin G.; Sargsyan, Artsrun A.
5
2018
On the universal function for weighted spaces \(L^p_{\mu}[0,1], p\geq1\). Zbl 1382.42016
Grigoryan, Martin; Grigoryan, Tigran; Sargsyan, Artsrun
2
2018
Quasiuniversal Fourier-Walsh series for the classes \(L^p[0, 1]\), \(p > 1\). Zbl 1409.42021
Sargsyan, A. A.
1
2018
Universal function for a weighted space \(L^1_{\mu}[0,1]\). Zbl 1378.42015
Sargsyan, Artsrun; Grigoryan, Martin
5
2017
On the universal function for the class \(L^{p}[0,1]\), \(p\in (0,1)\). Zbl 1333.42049
Grigoryan, M. G.; Sargsyan, A. A.
12
2016
On existence of a universal function for \(L^p[0, 1]\) with \(p\in(0, 1)\). Zbl 1361.42028
Grigoryan, Martin G.; Sargsyan, A. A.
1
2016
On the coefficients of the expansion of elements from \(C[0,1]\) space by Faber-Schauder system. Zbl 1229.42032
Grigoryan, M. G.; Sargsyan, A. A.
2
2011
Unconditional \(C\)-strong property of Faber-Schauder system. Zbl 1160.42316
Grigoryan, M. G.; Sargsyan, A. A.
2
2009
Non-linear approximation of continuous functions by the Faber-Schauder system. Zbl 1153.42014
Grigorian, M. G.; Sargsyan, A. A.
4
2008

Citations by Year