×

zbMATH — the first resource for mathematics

Scolozzi, Donato

Compute Distance To:
Author ID: scolozzi.donato Recent zbMATH articles by "Scolozzi, Donato"
Published as: Scolozzi, D.; Scolozzi, Donato
Documents Indexed: 10 Publications since 1977

Co-Authors

3 single-authored
6 Marino, Antonio
1 Leaci, Antonio

Publications by Year

Citations contained in zbMATH Open

8 Publications have been cited 70 times in 40 Documents Cited by Year
Geodesics with obstacles. (Geodetiche con ostacolo.) Zbl 0563.53034
Marino, Antonio; Scolozzi, D.
27
1983
Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle. Zbl 0729.35088
Chobanov, G.; Marino, A.; Scolozzi, D.
17
1990
Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle, and nontangency conditions. Zbl 0716.49009
Chobanov, G.; Marino, A.; Scolozzi, D.
16
1990
Lower stationary points and evolution equations with non-convex unilateral bounds. Zbl 0567.35005
Marino, A.; Scolozzi, D.
3
1982
Existence and multiplicity of nonlinear eigenvalues of the operator \(- \Delta{}-g\) with respect to two obstacles. Zbl 0737.35059
Leaci, A.; Scolozzi, D.
2
1989
Existence and multiplicity of geodesics with constraints and varying end points. Zbl 0592.53040
Scolozzi, Donato
2
1984
Eigenvalues of the Laplace operator and evolution equations in presence of an obstacle. Zbl 0613.35024
Marino, Antonio; Scolozzi, Donato
2
1984
A result on the local uniqueness for geodesics on manifolds with boundary. Zbl 0601.53044
Scolozzi, D.
1
1986
Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle. Zbl 0729.35088
Chobanov, G.; Marino, A.; Scolozzi, D.
17
1990
Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle, and nontangency conditions. Zbl 0716.49009
Chobanov, G.; Marino, A.; Scolozzi, D.
16
1990
Existence and multiplicity of nonlinear eigenvalues of the operator \(- \Delta{}-g\) with respect to two obstacles. Zbl 0737.35059
Leaci, A.; Scolozzi, D.
2
1989
A result on the local uniqueness for geodesics on manifolds with boundary. Zbl 0601.53044
Scolozzi, D.
1
1986
Existence and multiplicity of geodesics with constraints and varying end points. Zbl 0592.53040
Scolozzi, Donato
2
1984
Eigenvalues of the Laplace operator and evolution equations in presence of an obstacle. Zbl 0613.35024
Marino, Antonio; Scolozzi, Donato
2
1984
Geodesics with obstacles. (Geodetiche con ostacolo.) Zbl 0563.53034
Marino, Antonio; Scolozzi, D.
27
1983
Lower stationary points and evolution equations with non-convex unilateral bounds. Zbl 0567.35005
Marino, A.; Scolozzi, D.
3
1982

Citations by Year