×

zbMATH — the first resource for mathematics

Trofimov, Vyacheslav A.

Compute Distance To:
Author ID: trofimov.vyacheslav-a Recent zbMATH articles by "Trofimov, Vyacheslav A."
Published as: Trofimov, V.; Trofimov, V. A.; Trofimov, Vyacheslav; Trofimov, Vyacheslav A.
External Links: Math-Net.Ru · ResearchGate
Documents Indexed: 78 Publications since 1987, including 1 Book

Publications by Year

Citations contained in zbMATH

22 Publications have been cited 43 times in 31 Documents Cited by Year
Mathematical modelling in nonlinear optics. Zbl 0704.65049
Karamzin, Yu. N.; Sukhorukov, A. P.; Trofimov, V. A.
10
1989
Comparison of finite-difference schemes for the Gross-Pitaevskii equation. Zbl 1169.82011
Trofimov, V. A.; Peskov, N. V.
5
2009
Simulation of soliton solutions for the propagation of a femtosecond pulse in a medium with a cubic nonlinearity. Zbl 0964.78013
Dorokhova, T. V.; Savenkova, N. P.; Trofimov, V. A.
3
2000
Numerical methods for problems describing heat self-interaction of optical radiation. Zbl 0969.80502
Zakharova, I. G.; Karamzin, Yu. N.; Trofimov, V. A.
3
1989
Conservative finite-difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with nonreflecting boundary conditions. Zbl 1210.65140
Tereshin, E. B.; Trofimov, V. A.; Fedotov, M. V.
2
2006
Difference scheme for three-frequency interaction of femtosecond pulses in the presence of nonlinear response dispersion. Zbl 1089.78019
Borhanifar, A.; Volkov, A. G.; Trofimov, V. A.
2
2005
Soliton-like regime of femtosecond laser pulse propogation in bulk media under the conditions of SHG. Zbl 1118.78308
Trofimov, Vyacheslav A.; Lysak, Tatiana M.
2
2005
On a new approach to the simulation of the nonlinear propagation of ultrashort laser pulses. Zbl 0953.78005
Trofimov, V. A.
2
1998
Transmission of a few-cycle femtosecond pulse through an optically thin plate. Zbl 1338.78020
Komarova, E. S.; Trofimov, V. A.; Fedotov, M. V.
1
2015
A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Zbl 1354.37090
Trykin, Evgeny M.; Trofimov, Vyacheslav A.
1
2015
Iterative method for finding the eigenfunctions of a system of two Schrödinger equations with combined nonlinearity. Zbl 1164.35494
Matusevich, O. V.; Trofimov, V. A.
1
2008
On a difference method for finding eigenmodes of the nonlinear Schrödinger equation. Zbl 1105.78008
Varentsova, S. A.; Trofimov, V. A.
1
2005
A difference scheme for the solution to the problem of the femtosecond pulse interaction with a nonlinear mobility semiconductor. Zbl 1101.82043
Loginova, M. M.; Trofimov, V. A.
1
2005
Conservative difference schemes for some problems of femtosecond nonlinear optics. Zbl 1103.78005
Volkov, A. G.; Trofimov, V. A.; Tereshin, E. B.
1
2005
Conservative difference scheme for summary frequency generation of femtosecond pulse. Zbl 1118.78306
Trofimov, Vyacheslav A.; Borhanifar, Abdolla; Volkov, Alexey G.
1
2005
Comparison of efficiency of various approaches to computer simulation of nonlinear interaction of three femtosecond pulses in optical fiber. Zbl 1105.78007
Borhanifar, A.; Trofimov, V. A.
1
2004
Mathematical modelling the optical bistability based on a light-induced electric field. Zbl 1147.78303
Varentsova, S. A.; Loginova, M. M.; Trofimov, V. A.
1
2003
Studying difference schemes for the problem of femtosecond pulse action in a photonic crystal. Zbl 1050.78012
Trofimov, V. A.; Tereshin, E. B.; Fedotov, M. V.
1
2003
Invariants of nonlinear interaction of femtosecond pulses in the presence of third-order dispersion. Zbl 1056.81100
Varentsova, S. A.; Trofimov, V. A.
1
2002
Bistability and uniqueness of solutions in the problem of second harmonic generation of femtosecond pulses. Zbl 1029.35205
Lysak, T. M.; Trofimov, V. A.
1
2001
On the coomputation of the eigenvalues and eigenfunctions of the one-dimensional Schrödinger equation on adaptive grids. Zbl 1074.35571
Varentsova, S. A.; Ponomareva, E. V.; Trofimov, V. A.
1
2000
On the modeling of macrokinetic of gas-phase reactions under the influence of optic radiation. Zbl 0974.78539
Kalinichenko, M. I.; Karamzin, Yu. N.; Trofimov, V. A.
1
1990
Transmission of a few-cycle femtosecond pulse through an optically thin plate. Zbl 1338.78020
Komarova, E. S.; Trofimov, V. A.; Fedotov, M. V.
1
2015
A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Zbl 1354.37090
Trykin, Evgeny M.; Trofimov, Vyacheslav A.
1
2015
Comparison of finite-difference schemes for the Gross-Pitaevskii equation. Zbl 1169.82011
Trofimov, V. A.; Peskov, N. V.
5
2009
Iterative method for finding the eigenfunctions of a system of two Schrödinger equations with combined nonlinearity. Zbl 1164.35494
Matusevich, O. V.; Trofimov, V. A.
1
2008
Conservative finite-difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with nonreflecting boundary conditions. Zbl 1210.65140
Tereshin, E. B.; Trofimov, V. A.; Fedotov, M. V.
2
2006
Difference scheme for three-frequency interaction of femtosecond pulses in the presence of nonlinear response dispersion. Zbl 1089.78019
Borhanifar, A.; Volkov, A. G.; Trofimov, V. A.
2
2005
Soliton-like regime of femtosecond laser pulse propogation in bulk media under the conditions of SHG. Zbl 1118.78308
Trofimov, Vyacheslav A.; Lysak, Tatiana M.
2
2005
On a difference method for finding eigenmodes of the nonlinear Schrödinger equation. Zbl 1105.78008
Varentsova, S. A.; Trofimov, V. A.
1
2005
A difference scheme for the solution to the problem of the femtosecond pulse interaction with a nonlinear mobility semiconductor. Zbl 1101.82043
Loginova, M. M.; Trofimov, V. A.
1
2005
Conservative difference schemes for some problems of femtosecond nonlinear optics. Zbl 1103.78005
Volkov, A. G.; Trofimov, V. A.; Tereshin, E. B.
1
2005
Conservative difference scheme for summary frequency generation of femtosecond pulse. Zbl 1118.78306
Trofimov, Vyacheslav A.; Borhanifar, Abdolla; Volkov, Alexey G.
1
2005
Comparison of efficiency of various approaches to computer simulation of nonlinear interaction of three femtosecond pulses in optical fiber. Zbl 1105.78007
Borhanifar, A.; Trofimov, V. A.
1
2004
Mathematical modelling the optical bistability based on a light-induced electric field. Zbl 1147.78303
Varentsova, S. A.; Loginova, M. M.; Trofimov, V. A.
1
2003
Studying difference schemes for the problem of femtosecond pulse action in a photonic crystal. Zbl 1050.78012
Trofimov, V. A.; Tereshin, E. B.; Fedotov, M. V.
1
2003
Invariants of nonlinear interaction of femtosecond pulses in the presence of third-order dispersion. Zbl 1056.81100
Varentsova, S. A.; Trofimov, V. A.
1
2002
Bistability and uniqueness of solutions in the problem of second harmonic generation of femtosecond pulses. Zbl 1029.35205
Lysak, T. M.; Trofimov, V. A.
1
2001
Simulation of soliton solutions for the propagation of a femtosecond pulse in a medium with a cubic nonlinearity. Zbl 0964.78013
Dorokhova, T. V.; Savenkova, N. P.; Trofimov, V. A.
3
2000
On the coomputation of the eigenvalues and eigenfunctions of the one-dimensional Schrödinger equation on adaptive grids. Zbl 1074.35571
Varentsova, S. A.; Ponomareva, E. V.; Trofimov, V. A.
1
2000
On a new approach to the simulation of the nonlinear propagation of ultrashort laser pulses. Zbl 0953.78005
Trofimov, V. A.
2
1998
On the modeling of macrokinetic of gas-phase reactions under the influence of optic radiation. Zbl 0974.78539
Kalinichenko, M. I.; Karamzin, Yu. N.; Trofimov, V. A.
1
1990
Mathematical modelling in nonlinear optics. Zbl 0704.65049
Karamzin, Yu. N.; Sukhorukov, A. P.; Trofimov, V. A.
10
1989
Numerical methods for problems describing heat self-interaction of optical radiation. Zbl 0969.80502
Zakharova, I. G.; Karamzin, Yu. N.; Trofimov, V. A.
3
1989

Citations by Year