×

zbMATH — the first resource for mathematics

Trifonov, Andrey Yu.

Compute Distance To:
Author ID: trifonov.andrey-yu Recent zbMATH articles by "Trifonov, Andrey Yu."
Published as: Trifonov, A. Yu.; Trifonov, A. Yu; Trifonov, Andrey; Trifonov, Andrey Yu.; Trifonov, A.; Trifonov, Andrey Yu
Documents Indexed: 50 Publications since 1994

Publications by Year

Citations contained in zbMATH Open

20 Publications have been cited 94 times in 54 Documents Cited by Year
Semiclassical trajectory-coherent approximation in quantum mechanics. I: High-order corrections to multidimensional time-dependent equations of Schrödinger type. Zbl 0874.35099
Bagrov, V. G.; Belov, V. V.; Trifonov, A. Yu.
22
1996
The one-dimensional Fisher-Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation. Zbl 1202.81071
Trifonov, A. Yu.; Shapovalov, A. V.
13
2009
The trajectory-coherent approximation and the system of moments for the Hartree type equation. Zbl 1136.81372
Belov, V. V.; Trifonov, A. Yu.; Shapovalov, A. V.
13
2002
The evolution operator of the Hartree-type equation with a quadratic potential. Zbl 1051.35060
Lisok, A. L.; Trifonov, A. Yu.; Shapovalov, A. V.
6
2004
Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Zbl 1305.45002
Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu
5
2014
Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton-ehrenfest system. Zbl 1118.81033
Belov, V. V.; Litvinets, F. N.; Trifonov, A. Yu.
5
2007
Symmetries of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation. Zbl 1248.45007
Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu.
4
2012
Evolution of initial distributions with one and two centers in a two-dimensional model of the reaction-diffusion type with a nonlocal interaction of finite radius. Zbl 1232.35082
Borisov, A. V.; Trifonov, A. Yu.; Shapovalov, A. V.
4
2011
The Aharonov-Anandan phase for quasi-energy trajectory-coherent states. Zbl 0872.47034
Trifonov, A. Yu.; Yevseyevich, A. A.
3
1995
Quasi-classical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori. Zbl 0842.34086
Bagrov, V. G.; Belov, V. V.; Trifonov, A. Yu.; Evseevich, A. A.
3
1994
Symmetry and intertwining operators for the nonlocal Gross-Pitaevskii equation. Zbl 1290.35245
Lisok, Aleksandr L.; Shapovalov, Aleksandr V.; Trifonov, Andrey Yu.
3
2013
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation. Zbl 1458.35432
Shapovalov, A. V.; Trifonov, A. Yu.
2
2018
Symmetry operators of the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation with a quadratic operator. Zbl 1294.81048
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
2
2014
Estimate of accuracy of solution of the nonlocal Fisher-Kolomogorov-Petrovskii-Piskunov equation. Zbl 1298.35023
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
2
2013
Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Zbl 1346.35107
Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu
2
2016
Formalism of semiclassical asymptotics for a two-component Hartree-type equation. Zbl 1202.81070
Smirnova, E. I.; Trifonov, A. Yu.; Shapovalov, A. V.
1
2009
Symmetries of the one-dimensional Fokker-Planck-Kolmogorov equation with a nonlocal quadratic nonlinearity. Zbl 1382.35305
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
1
2017
Semiclassical solutions of the nonlinear Schrödinger equation. Zbl 0947.35152
Shapovalov, A. V.; Trifonov, A. Yu.
1
1999
Semiclassical spectral series for the two-component Hartree-type equation. Zbl 1257.81028
Belov, V. V.; Smirnova, E. I.; Trifonov, A. Yu.
1
2011
Semiclassical concentrated solutions for the one-dimensional Fokker-Planck equation with a nonlocal nonlinearity. Zbl 1113.82054
Bellucci, Stefano; Trifonov, Andrey Yu
1
2005
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation. Zbl 1458.35432
Shapovalov, A. V.; Trifonov, A. Yu.
2
2018
Symmetries of the one-dimensional Fokker-Planck-Kolmogorov equation with a nonlocal quadratic nonlinearity. Zbl 1382.35305
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
1
2017
Asymptotics semiclassically concentrated on curves for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Zbl 1346.35107
Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu
2
2016
Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Zbl 1305.45002
Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu
5
2014
Symmetry operators of the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation with a quadratic operator. Zbl 1294.81048
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
2
2014
Symmetry and intertwining operators for the nonlocal Gross-Pitaevskii equation. Zbl 1290.35245
Lisok, Aleksandr L.; Shapovalov, Aleksandr V.; Trifonov, Andrey Yu.
3
2013
Estimate of accuracy of solution of the nonlocal Fisher-Kolomogorov-Petrovskii-Piskunov equation. Zbl 1298.35023
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
2
2013
Symmetries of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation. Zbl 1248.45007
Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu.
4
2012
Evolution of initial distributions with one and two centers in a two-dimensional model of the reaction-diffusion type with a nonlocal interaction of finite radius. Zbl 1232.35082
Borisov, A. V.; Trifonov, A. Yu.; Shapovalov, A. V.
4
2011
Semiclassical spectral series for the two-component Hartree-type equation. Zbl 1257.81028
Belov, V. V.; Smirnova, E. I.; Trifonov, A. Yu.
1
2011
The one-dimensional Fisher-Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation. Zbl 1202.81071
Trifonov, A. Yu.; Shapovalov, A. V.
13
2009
Formalism of semiclassical asymptotics for a two-component Hartree-type equation. Zbl 1202.81070
Smirnova, E. I.; Trifonov, A. Yu.; Shapovalov, A. V.
1
2009
Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton-ehrenfest system. Zbl 1118.81033
Belov, V. V.; Litvinets, F. N.; Trifonov, A. Yu.
5
2007
Semiclassical concentrated solutions for the one-dimensional Fokker-Planck equation with a nonlocal nonlinearity. Zbl 1113.82054
Bellucci, Stefano; Trifonov, Andrey Yu
1
2005
The evolution operator of the Hartree-type equation with a quadratic potential. Zbl 1051.35060
Lisok, A. L.; Trifonov, A. Yu.; Shapovalov, A. V.
6
2004
The trajectory-coherent approximation and the system of moments for the Hartree type equation. Zbl 1136.81372
Belov, V. V.; Trifonov, A. Yu.; Shapovalov, A. V.
13
2002
Semiclassical solutions of the nonlinear Schrödinger equation. Zbl 0947.35152
Shapovalov, A. V.; Trifonov, A. Yu.
1
1999
Semiclassical trajectory-coherent approximation in quantum mechanics. I: High-order corrections to multidimensional time-dependent equations of Schrödinger type. Zbl 0874.35099
Bagrov, V. G.; Belov, V. V.; Trifonov, A. Yu.
22
1996
The Aharonov-Anandan phase for quasi-energy trajectory-coherent states. Zbl 0872.47034
Trifonov, A. Yu.; Yevseyevich, A. A.
3
1995
Quasi-classical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori. Zbl 0842.34086
Bagrov, V. G.; Belov, V. V.; Trifonov, A. Yu.; Evseevich, A. A.
3
1994

Citations by Year