×

Tena Ayuso, Juan Gabriel

Author ID: tena-ayuso.juan-gabriel Recent zbMATH articles by "Tena Ayuso, Juan Gabriel"
Published as: Tena Ayuso, Juan Gabriel; Tena Ayuso, Juan G.; Tena Ayuso, Juan; Tena-Ayuso, Juan G.; Tena Ayuso, J. G.; Tena-Ayuso, Juan
External Links: MGP
Documents Indexed: 32 Publications since 1972, including 3 Books
1 Contribution as Editor
Reviewing Activity: 283 Reviews
Co-Authors: 30 Co-Authors with 27 Joint Publications
458 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

12 Publications have been cited 39 times in 28 Documents Cited by Year
An algorithm to compute volcanoes of 2-isogenies of elliptic curves over finite fields. Zbl 1090.14018
Miret, J.; Moreno, R.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Valls, M.
10
2006
A generalization of Proth’s theorem. Zbl 1028.11001
Berrizbeitia, Pedro; Berry, T. G.; Tena-Ayuso, Juan
5
2003
Computing the height of volcanoes of \(\ell \)-isogenies of elliptic curves over finite fields. Zbl 1138.14035
Miret, J.; Moreno, R.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Valls, M.
5
2008
Volcanoes of \(\ell\)-isogenies of elliptic curves over finite fields: the case \(\ell=3^*\). Zbl 1166.14023
Miret, J. M.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Tomàs, R.; Valls, M.
4
2007
Primality test for numbers \(M\) with a large power of 5 dividing \(M^{4}-1\). Zbl 1048.11101
Berrizbeitia, Pedro; Odremán, Mauricio; Tena Ayuso, Juan
3
2003
On avoiding ZVP-attacks using isogeny volcanoes. Zbl 1292.94114
Miret, J.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Tomàs, R.; Valls, M.
3
2009
Isomorphism classes of elliptic curves with even order over a finite field. Zbl 1221.11143
Miret, J.; Moreno, R.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Valls, M.
2
2002
An algorithm to compute the number of points on elliptic curves of \(j\)-invariant 0 or 1728 over a finite field. Zbl 0797.11096
Munuera, Carlos; Tena Ayuso, Juan G.
2
1993
Weight hierarchy of a product code. Zbl 0843.94014
Barbero, Angela I.; Tena Ayuso, Juan G.
2
1995
On Edwards curves and ZVP-attacks. Zbl 1292.94111
Martínez, S.; Sadornil, D.; Tena Ayuso, J. G.; Tomàs, R.; Valls, M.
2
2013
Elliptic curves with \(j=0,1728\) and low embedding degree. Zbl 1359.14031
Miret, J. M.; Sadornil, D.; Tena, J.
1
2016
Quintic reciprocity and primality test for numbers of the form \(M=A5^n\pm\omega_n\). Zbl 1026.11092
Berrizbeitia, Pedro; Vera, Mauricio Odreman; Tena Ayuso, Juan
1
2000
Elliptic curves with \(j=0,1728\) and low embedding degree. Zbl 1359.14031
Miret, J. M.; Sadornil, D.; Tena, J.
1
2016
On Edwards curves and ZVP-attacks. Zbl 1292.94111
Martínez, S.; Sadornil, D.; Tena Ayuso, J. G.; Tomàs, R.; Valls, M.
2
2013
On avoiding ZVP-attacks using isogeny volcanoes. Zbl 1292.94114
Miret, J.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Tomàs, R.; Valls, M.
3
2009
Computing the height of volcanoes of \(\ell \)-isogenies of elliptic curves over finite fields. Zbl 1138.14035
Miret, J.; Moreno, R.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Valls, M.
5
2008
Volcanoes of \(\ell\)-isogenies of elliptic curves over finite fields: the case \(\ell=3^*\). Zbl 1166.14023
Miret, J. M.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Tomàs, R.; Valls, M.
4
2007
An algorithm to compute volcanoes of 2-isogenies of elliptic curves over finite fields. Zbl 1090.14018
Miret, J.; Moreno, R.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Valls, M.
10
2006
A generalization of Proth’s theorem. Zbl 1028.11001
Berrizbeitia, Pedro; Berry, T. G.; Tena-Ayuso, Juan
5
2003
Primality test for numbers \(M\) with a large power of 5 dividing \(M^{4}-1\). Zbl 1048.11101
Berrizbeitia, Pedro; Odremán, Mauricio; Tena Ayuso, Juan
3
2003
Isomorphism classes of elliptic curves with even order over a finite field. Zbl 1221.11143
Miret, J.; Moreno, R.; Sadornil, D.; Tena Ayuso, Juan Gabriel; Valls, M.
2
2002
Quintic reciprocity and primality test for numbers of the form \(M=A5^n\pm\omega_n\). Zbl 1026.11092
Berrizbeitia, Pedro; Vera, Mauricio Odreman; Tena Ayuso, Juan
1
2000
Weight hierarchy of a product code. Zbl 0843.94014
Barbero, Angela I.; Tena Ayuso, Juan G.
2
1995
An algorithm to compute the number of points on elliptic curves of \(j\)-invariant 0 or 1728 over a finite field. Zbl 0797.11096
Munuera, Carlos; Tena Ayuso, Juan G.
2
1993

Citations by Year