×
Author ID: ford.neville-j Recent zbMATH articles by "Ford, Neville J."
Published as: Ford, Neville J.; Ford, N. J.; Ford, Neville
External Links: MGP · ORCID · Google Scholar · ResearchGate · dblp
Documents Indexed: 95 Publications since 1988, including 2 Books
3 Contributions as Editor
Reviewing Activity: 251 Reviews
Co-Authors: 57 Co-Authors with 94 Joint Publications
1,326 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

83 Publications have been cited 4,381 times in 2,985 Documents Cited by Year
A predictor-corrector approach for the numerical solution of fractional differential equations. Zbl 1009.65049
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
940
2002
Analysis of fractional differential equations. Zbl 1014.34003
Diethelm, Kai; Ford, Neville J.
721
2002
Detailed error analysis for a fractional Adams method. Zbl 1055.65098
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
435
2004
Algorithms for the fractional calculus: a selection of numerical methods. Zbl 1119.65352
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
265
2005
Multi-order fractional differential equations and their numerical solution. Zbl 1060.65070
Diethelm, Kai; Ford, Neville J.
151
2004
Numerical solution of the Bagley-Torvik equation. Zbl 1035.65067
Diethelm, K.; Ford, N. J.
137
2002
Numerical analysis for distributed-order differential equations. Zbl 1159.65103
Diethelm, Kai; Ford, Neville J.
133
2009
A finite element method for time fractional partial differential equations. Zbl 1273.65142
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
125
2011
The numerical solution of fractional differential equations: speed versus accuracy. Zbl 0976.65062
Ford, Neville J.; Simpson, A. Charles
110
2001
An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. Zbl 1381.65070
Yan, Yubin; Khan, Monzorul; Ford, Neville J.
105
2018
The numerical solution of linear multi-term fractional differential equations: Systems of equations. Zbl 1019.65048
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
90
2002
Analysis and numerical methods for fractional differential equations with delay. Zbl 1291.65214
Morgado, M. L.; Ford, N. J.; Lima, P. M.
88
2013
Pitfalls in fast numerical solvers for fractional differential equations. Zbl 1078.65550
Diethelm, Kai; Ford, Judith M.; Ford, Neville J.; Weilbeer, Marc
78
2006
Higher order numerical methods for solving fractional differential equations. Zbl 1304.65173
Yan, Yubin; Pal, Kamal; Ford, Neville J.
60
2014
Collocation methods for fractional integro-differential equations with weakly singular kernels. Zbl 1298.65197
Zhao, Jingjun; Xiao, Jingyu; Ford, Neville J.
60
2014
Fractional boundary value problems: analysis and numerical methods. Zbl 1273.65098
Ford, Neville J.; Morgado, M. Luísa
56
2011
Nonpolynomial collocation approximation of solutions to fractional differential equations. Zbl 1312.65124
Ford, Neville J.; Morgado, M. Luísa; Rebelo, Magda
54
2013
Distributed order equations as boundary value problems. Zbl 1268.45005
Ford, N. J.; Morgado, M. L.
46
2012
Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Zbl 1357.65198
Morgado, Maria Luísa; Rebelo, Magda; Ferrás, Luis L.; Ford, Neville J.
41
2017
An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Zbl 1330.65130
Ford, N. J.; Morgado, M. L.; Rebelo, M.
39
2015
Numerical Hopf bifurcation for a class of delay differential equations. Zbl 0946.65065
Wulf, Volker; Ford, Neville J.
38
2000
An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Zbl 1377.65102
Ford, Neville J.; Yan, Yubin
37
2017
Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. Zbl 1166.65066
Ford, Neville J.; Connolly, Joseph A.
36
2009
Comparison of numerical methods for fractional differential equations. Zbl 1133.65115
Ford, Neville J.; Connolly, Joseph A.
32
2006
Volterra integral equations and fractional calculus: do neighboring solutions intersect? Zbl 1238.45003
Diethelm, Kai; Ford, Neville J.
31
2012
Stability properties of a scheme for the approximate solution of a delay- integro-differential equation. Zbl 0754.65111
Baker, Christopher T. H.; Ford, Neville J.
29
1992
Numerical solution methods for distributed order differential equations. Zbl 1032.65070
Diethelm, Kai; Ford, Neville J.
28
2001
The use of boundary locus plots in the identification of bifurcation points in numerical approximation of delay differential equations. Zbl 0941.65132
Ford, Neville J.; Wulf, Volker
27
1999
A numerical method for the fractional Schrödinger type equation of spatial dimension two. Zbl 1312.65132
Ford, Neville; Rodrigues, M. Manuela; Vieira, Nelson
26
2013
Numerical analysis of a two-parameter fractional telegraph equation. Zbl 1302.65187
Ford, Neville J.; Rodrigues, M. Manuela; Xiao, Jingyu; Yan, Yubin
24
2013
A nonpolynomial collocation method for fractional terminal value problems. Zbl 1297.65076
Ford, N. J.; Morgado, M. L.; Rebelo, M.
23
2015
Error estimates of a high order numerical method for solving linear fractional differential equations. Zbl 1357.65089
Li, Zhiqiang; Yan, Yubin; Ford, Neville J.
18
2017
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
16
2009
Some time stepping methods for fractional diffusion problems with nonsmooth data. Zbl 1383.65097
Yang, Yan; Yan, Yubin; Ford, Neville J.
16
2018
Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. Zbl 0858.65137
Ford, Neville J.; Baker, Christopher T. H.
14
1996
An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Zbl 1327.65173
Ford, Neville J.; Pal, Kamal; Yan, Yubin
14
2015
Convergence of linear multistep methods for a class of delay-integro- differential equations. Zbl 0656.65117
Baker, Christopher T. H.; Ford, Neville J.
13
1988
Numerical methods for a Volterra integral equation with nonsmooth solutions. Zbl 1092.65119
Diogo, Teresa; Ford, Neville J.; Lima, Pedro; Valtchev, Svilen
13
2006
High order numerical methods for fractional terminal value problems. Zbl 1285.65049
Ford, Neville J.; Morgado, Maria L.; Rebelo, Magda
13
2014
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
11
2009
A note on the well-posedness of terminal value problems for fractional differential equations. Zbl 1406.34009
Diethelm, Kai; Ford, Neville J.
11
2018
Some applications of the boundary-locus method and the method of D- partitions. Zbl 0726.65152
Baker, Christopher T. H.; Ford, Neville J.
10
1991
Stability of a numerical method for a space-time-fractional telegraph equation. Zbl 1284.65154
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
10
2012
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
9
2010
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
9
2010
Numerical analysis of a singular integral equation. Zbl 1082.65140
Diogo, Teresa; Edwards, John T.; Ford, Neville J.; Thomas, Sophy M.
8
2005
Fractional Pennes’ bioheat equation: theoretical and numerical studies. Zbl 1326.35415
Ferrás, Luis L.; Ford, Neville J.; Morgado, Maria L.; Nóbrega, João M.; Rebelo, Magda S.
8
2015
Volterra integral equations with non-Lipschitz nonlinearity. Zbl 0897.65088
Frischmuth, Kurt; Ford, Neville J.; Edwards, John T.
7
1997
How do numerical methods perform for delay differential equations undergoing a Hopf bifurcation? Zbl 0971.65068
Ford, Neville J.; Wulf, Volker
6
2000
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0746.65097
Baker, Christopher T. H.; Ford, Neville J.
6
1990
Nonlinear Volterra integro-differential equations – stability and numerical stability of \(\theta\)-methods. Zbl 0944.65150
Ford, Neville J.; Baker, Christopher T. H.; Roberts, J. A.
6
1998
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
6
2002
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
6
2010
On the decay of the elements of inverse triangular Toeplitz matrices. Zbl 1317.15027
Ford, Neville J.; Savostyanov, Dmitry V.; Zamarashkin, Nickolai L.
6
2014
Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Zbl 1410.76286
Ferrás, L. L.; Ford, Neville J.; Morgado, Maria Luísa; Rebelo, Magda; McKinley, Gareth H.; Nóbrega, João M.
6
2018
Bifurcations in approximate solutions of stochastic delay differential equations. Zbl 1080.34053
Baker, Christopher T. H.; Ford, Judith M.; Ford, Neville J.
5
2004
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
5
2010
Stability, structural stability and numerical methods for fractional boundary value problems. Zbl 1262.65082
Ford, Neville J.; Morgado, M. Luísa
5
2013
Boundedness and stability of solutions to difference equations. Zbl 1002.39025
Edwards, John T.; Ford, Neville J.
4
2002
Solution of a singular integral equation by a split-interval method. Zbl 1116.65129
Diogo, Teresa; Ford, Neville J.; Lima, Pedro M.; Thomas, Sophy M.
4
2007
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
High-order methods for systems of fractional ordinary differential equations and their application to time-fractional diffusion equations. Zbl 1543.65106
Ferrás, Luís L.; Ford, Neville; Morgado, Maria Luísa; Rebelo, Magda
4
2021
Insight into the qualitative behaviour of numerical solutions to some delay differential equations. Zbl 0944.65091
Wulf, Volker; Ford, Neville J.
3
1998
Preserving transient behaviour in numerical solutions of Volterra integral equations of convolution type. Zbl 0965.65146
Ford, Neville J.; Baker, Christopher T. H.
3
2000
Bifurcations in numerical methods for Volterra integro-differential equations. Zbl 1064.65154
Edwards, John T.; Ford, Neville J.; Roberts, Jason A.
3
2003
Numerical investigation of \(D\)-bifurcations for a stochastic delay logistic equation. Zbl 1073.60063
Ford, Neville J.; Norton, Stewart J.
3
2005
Numerical modelling of qualitative behaviour of solutions to convolution integral equations. Zbl 1125.65118
Ford, Neville J.; Diogo, Teresa; Ford, Judith M.; Lima, Pedro
3
2007
Characterising small solutions in delay differential equations through numerical approximations. Zbl 1030.34059
Ford, Neville J.; Verduyn Lunel, Sjoerd M.
3
2002
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances. Zbl 1227.65061
Ferreira, José M.; Ford, Neville J.; Malique, Md. Abdul; Pinelas, Sandra; Yan, Yubin
3
2011
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0794.65096
Baker, Christopher T. H.; Ford, Neville J.
2
1993
Introducing formal methods: a less mathematical approach. Zbl 0850.68232
Ford, Neville; Ford, Judith
2
1993
Simulation of grain-boundary diffusion creep: analysis of some new numerical techniques. Zbl 1321.74018
Ford, J. M.; Ford, N. J.; Wheeler, J.
2
2004
Numerical treatment of oscillatory functional differential equations. Zbl 1191.65083
Ford, Neville J.; Yan, Yubin; Malique, Md. Abdul
2
2010
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
2
2014
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
2
2017
Flexible parallelization of fast wavelet transforms. Zbl 1054.65132
Ford, Judith M.; Chen, Ke; Ford, Neville J.
1
2003
Theory and numerics for multi-term periodic delay differential equations: small solutions and their detection. Zbl 1178.34096
Ford, Neville J.; Lumb, Patricia M.
1
2007
Characteristic functions of differential equations with deviating arguments. Zbl 1443.34061
Baker, Christopher T. H.; Ford, Neville J.
1
2020
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Numerical modelling by delay and Volterra functional differential equations. Zbl 1094.65133
Baker, C. T. H.; Bocharov, G. A.; Filiz, A.; Ford, N. J.; Paul, C. A. H.; Rihan, F. A.; Tang, A.; Thomas, R. M.; Tian, H.; Willé, D. R.
1
2001
Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Zbl 1135.34336
Norton, Stewart J.; Ford, Neville J.
1
2006
Numerical methods for multi-term fractional boundary value problems. Zbl 1320.34008
Ford, N. J.; Morgado, M. L.
1
2013
High-order methods for systems of fractional ordinary differential equations and their application to time-fractional diffusion equations. Zbl 1543.65106
Ferrás, Luís L.; Ford, Neville; Morgado, Maria Luísa; Rebelo, Magda
4
2021
Characteristic functions of differential equations with deviating arguments. Zbl 1443.34061
Baker, Christopher T. H.; Ford, Neville J.
1
2020
An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. Zbl 1381.65070
Yan, Yubin; Khan, Monzorul; Ford, Neville J.
105
2018
Some time stepping methods for fractional diffusion problems with nonsmooth data. Zbl 1383.65097
Yang, Yan; Yan, Yubin; Ford, Neville J.
16
2018
A note on the well-posedness of terminal value problems for fractional differential equations. Zbl 1406.34009
Diethelm, Kai; Ford, Neville J.
11
2018
Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Zbl 1410.76286
Ferrás, L. L.; Ford, Neville J.; Morgado, Maria Luísa; Rebelo, Magda; McKinley, Gareth H.; Nóbrega, João M.
6
2018
Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Zbl 1357.65198
Morgado, Maria Luísa; Rebelo, Magda; Ferrás, Luis L.; Ford, Neville J.
41
2017
An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Zbl 1377.65102
Ford, Neville J.; Yan, Yubin
37
2017
Error estimates of a high order numerical method for solving linear fractional differential equations. Zbl 1357.65089
Li, Zhiqiang; Yan, Yubin; Ford, Neville J.
18
2017
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
2
2017
An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Zbl 1330.65130
Ford, N. J.; Morgado, M. L.; Rebelo, M.
39
2015
A nonpolynomial collocation method for fractional terminal value problems. Zbl 1297.65076
Ford, N. J.; Morgado, M. L.; Rebelo, M.
23
2015
An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Zbl 1327.65173
Ford, Neville J.; Pal, Kamal; Yan, Yubin
14
2015
Fractional Pennes’ bioheat equation: theoretical and numerical studies. Zbl 1326.35415
Ferrás, Luis L.; Ford, Neville J.; Morgado, Maria L.; Nóbrega, João M.; Rebelo, Magda S.
8
2015
Higher order numerical methods for solving fractional differential equations. Zbl 1304.65173
Yan, Yubin; Pal, Kamal; Ford, Neville J.
60
2014
Collocation methods for fractional integro-differential equations with weakly singular kernels. Zbl 1298.65197
Zhao, Jingjun; Xiao, Jingyu; Ford, Neville J.
60
2014
High order numerical methods for fractional terminal value problems. Zbl 1285.65049
Ford, Neville J.; Morgado, Maria L.; Rebelo, Magda
13
2014
On the decay of the elements of inverse triangular Toeplitz matrices. Zbl 1317.15027
Ford, Neville J.; Savostyanov, Dmitry V.; Zamarashkin, Nickolai L.
6
2014
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
2
2014
Analysis and numerical methods for fractional differential equations with delay. Zbl 1291.65214
Morgado, M. L.; Ford, N. J.; Lima, P. M.
88
2013
Nonpolynomial collocation approximation of solutions to fractional differential equations. Zbl 1312.65124
Ford, Neville J.; Morgado, M. Luísa; Rebelo, Magda
54
2013
A numerical method for the fractional Schrödinger type equation of spatial dimension two. Zbl 1312.65132
Ford, Neville; Rodrigues, M. Manuela; Vieira, Nelson
26
2013
Numerical analysis of a two-parameter fractional telegraph equation. Zbl 1302.65187
Ford, Neville J.; Rodrigues, M. Manuela; Xiao, Jingyu; Yan, Yubin
24
2013
Stability, structural stability and numerical methods for fractional boundary value problems. Zbl 1262.65082
Ford, Neville J.; Morgado, M. Luísa
5
2013
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Numerical methods for multi-term fractional boundary value problems. Zbl 1320.34008
Ford, N. J.; Morgado, M. L.
1
2013
Distributed order equations as boundary value problems. Zbl 1268.45005
Ford, N. J.; Morgado, M. L.
46
2012
Volterra integral equations and fractional calculus: do neighboring solutions intersect? Zbl 1238.45003
Diethelm, Kai; Ford, Neville J.
31
2012
Stability of a numerical method for a space-time-fractional telegraph equation. Zbl 1284.65154
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
10
2012
A finite element method for time fractional partial differential equations. Zbl 1273.65142
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
125
2011
Fractional boundary value problems: analysis and numerical methods. Zbl 1273.65098
Ford, Neville J.; Morgado, M. Luísa
56
2011
Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances. Zbl 1227.65061
Ferreira, José M.; Ford, Neville J.; Malique, Md. Abdul; Pinelas, Sandra; Yan, Yubin
3
2011
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
9
2010
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
9
2010
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
6
2010
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
5
2010
Numerical treatment of oscillatory functional differential equations. Zbl 1191.65083
Ford, Neville J.; Yan, Yubin; Malique, Md. Abdul
2
2010
Numerical analysis for distributed-order differential equations. Zbl 1159.65103
Diethelm, Kai; Ford, Neville J.
133
2009
Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. Zbl 1166.65066
Ford, Neville J.; Connolly, Joseph A.
36
2009
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
16
2009
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
11
2009
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
Solution of a singular integral equation by a split-interval method. Zbl 1116.65129
Diogo, Teresa; Ford, Neville J.; Lima, Pedro M.; Thomas, Sophy M.
4
2007
Numerical modelling of qualitative behaviour of solutions to convolution integral equations. Zbl 1125.65118
Ford, Neville J.; Diogo, Teresa; Ford, Judith M.; Lima, Pedro
3
2007
Theory and numerics for multi-term periodic delay differential equations: small solutions and their detection. Zbl 1178.34096
Ford, Neville J.; Lumb, Patricia M.
1
2007
Pitfalls in fast numerical solvers for fractional differential equations. Zbl 1078.65550
Diethelm, Kai; Ford, Judith M.; Ford, Neville J.; Weilbeer, Marc
78
2006
Comparison of numerical methods for fractional differential equations. Zbl 1133.65115
Ford, Neville J.; Connolly, Joseph A.
32
2006
Numerical methods for a Volterra integral equation with nonsmooth solutions. Zbl 1092.65119
Diogo, Teresa; Ford, Neville J.; Lima, Pedro; Valtchev, Svilen
13
2006
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Zbl 1135.34336
Norton, Stewart J.; Ford, Neville J.
1
2006
Algorithms for the fractional calculus: a selection of numerical methods. Zbl 1119.65352
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
265
2005
Numerical analysis of a singular integral equation. Zbl 1082.65140
Diogo, Teresa; Edwards, John T.; Ford, Neville J.; Thomas, Sophy M.
8
2005
Numerical investigation of \(D\)-bifurcations for a stochastic delay logistic equation. Zbl 1073.60063
Ford, Neville J.; Norton, Stewart J.
3
2005
Detailed error analysis for a fractional Adams method. Zbl 1055.65098
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
435
2004
Multi-order fractional differential equations and their numerical solution. Zbl 1060.65070
Diethelm, Kai; Ford, Neville J.
151
2004
Bifurcations in approximate solutions of stochastic delay differential equations. Zbl 1080.34053
Baker, Christopher T. H.; Ford, Judith M.; Ford, Neville J.
5
2004
Simulation of grain-boundary diffusion creep: analysis of some new numerical techniques. Zbl 1321.74018
Ford, J. M.; Ford, N. J.; Wheeler, J.
2
2004
Bifurcations in numerical methods for Volterra integro-differential equations. Zbl 1064.65154
Edwards, John T.; Ford, Neville J.; Roberts, Jason A.
3
2003
Flexible parallelization of fast wavelet transforms. Zbl 1054.65132
Ford, Judith M.; Chen, Ke; Ford, Neville J.
1
2003
A predictor-corrector approach for the numerical solution of fractional differential equations. Zbl 1009.65049
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
940
2002
Analysis of fractional differential equations. Zbl 1014.34003
Diethelm, Kai; Ford, Neville J.
721
2002
Numerical solution of the Bagley-Torvik equation. Zbl 1035.65067
Diethelm, K.; Ford, N. J.
137
2002
The numerical solution of linear multi-term fractional differential equations: Systems of equations. Zbl 1019.65048
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
90
2002
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
6
2002
Boundedness and stability of solutions to difference equations. Zbl 1002.39025
Edwards, John T.; Ford, Neville J.
4
2002
Characterising small solutions in delay differential equations through numerical approximations. Zbl 1030.34059
Ford, Neville J.; Verduyn Lunel, Sjoerd M.
3
2002
The numerical solution of fractional differential equations: speed versus accuracy. Zbl 0976.65062
Ford, Neville J.; Simpson, A. Charles
110
2001
Numerical solution methods for distributed order differential equations. Zbl 1032.65070
Diethelm, Kai; Ford, Neville J.
28
2001
Numerical modelling by delay and Volterra functional differential equations. Zbl 1094.65133
Baker, C. T. H.; Bocharov, G. A.; Filiz, A.; Ford, N. J.; Paul, C. A. H.; Rihan, F. A.; Tang, A.; Thomas, R. M.; Tian, H.; Willé, D. R.
1
2001
Numerical Hopf bifurcation for a class of delay differential equations. Zbl 0946.65065
Wulf, Volker; Ford, Neville J.
38
2000
How do numerical methods perform for delay differential equations undergoing a Hopf bifurcation? Zbl 0971.65068
Ford, Neville J.; Wulf, Volker
6
2000
Preserving transient behaviour in numerical solutions of Volterra integral equations of convolution type. Zbl 0965.65146
Ford, Neville J.; Baker, Christopher T. H.
3
2000
The use of boundary locus plots in the identification of bifurcation points in numerical approximation of delay differential equations. Zbl 0941.65132
Ford, Neville J.; Wulf, Volker
27
1999
Nonlinear Volterra integro-differential equations – stability and numerical stability of \(\theta\)-methods. Zbl 0944.65150
Ford, Neville J.; Baker, Christopher T. H.; Roberts, J. A.
6
1998
Insight into the qualitative behaviour of numerical solutions to some delay differential equations. Zbl 0944.65091
Wulf, Volker; Ford, Neville J.
3
1998
Volterra integral equations with non-Lipschitz nonlinearity. Zbl 0897.65088
Frischmuth, Kurt; Ford, Neville J.; Edwards, John T.
7
1997
Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. Zbl 0858.65137
Ford, Neville J.; Baker, Christopher T. H.
14
1996
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0794.65096
Baker, Christopher T. H.; Ford, Neville J.
2
1993
Introducing formal methods: a less mathematical approach. Zbl 0850.68232
Ford, Neville; Ford, Judith
2
1993
Stability properties of a scheme for the approximate solution of a delay- integro-differential equation. Zbl 0754.65111
Baker, Christopher T. H.; Ford, Neville J.
29
1992
Some applications of the boundary-locus method and the method of D- partitions. Zbl 0726.65152
Baker, Christopher T. H.; Ford, Neville J.
10
1991
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0746.65097
Baker, Christopher T. H.; Ford, Neville J.
6
1990
Convergence of linear multistep methods for a class of delay-integro- differential equations. Zbl 0656.65117
Baker, Christopher T. H.; Ford, Neville J.
13
1988
all top 5

Cited by 3,888 Authors

80 Băleanu, Dumitru I.
51 Ford, Neville J.
39 Li, Changpin
38 Dehghan Takht Fooladi, Mehdi
36 Gómez-Aguilar, José Francisco
35 Liu, Fawang
34 Yan, Yubin
28 Momani, Shaher M.
26 Ahmad, Bashir
25 Abbaszadeh, Mostafa
25 Daftardar-Gejji, Varsha
25 Li, Hong
25 Liu, Yang
24 Zheng, Xiangcheng
23 Deng, Weihua
23 Garrappa, Roberto
22 Turner, Ian William
22 Zeng, Fanhai
21 Benchohra, Mouffak
21 Wang, Hong
20 Danca, Marius-Florin
20 Machado, José António Tenreiro
19 Karniadakis, George Em
19 Nieto Roig, Juan Jose
18 Atangana, Abdon
18 Diethelm, Kai
18 Ntouyas, Sotiris K.
18 Odibat, Zaid M.
18 Pedas, Arvet
17 Cao, Jinde
17 Javidi, Mohammad
17 Zaky, Mahmoud A.
16 Agarwal, Ravi P.
16 Al-saedi, Ahmed Eid Salem
16 Chen, Yangquan
15 Bhalekar, Sachin
15 Kumar, Sunil
15 Wu, Guocheng
14 Yu, Yongguang
13 Baker, Christopher Thomas Hale
13 Bhrawy, Ali Hassan
13 Huang, Chengming
13 Jiang, Xiaoyun
13 Ordokhani, Yadollah
13 Owolabi, Kolade Matthew
13 Rebelo, Magda S.
13 Salahshour, Soheil
13 Tavazoei, Mohammad Saleh
12 Abbas, Said
12 Kumar, Sachin
12 Sun, Zhizhong
12 Tamme, Enn
12 Xu, Chuanju
12 Yin, Baoli
12 Zhang, Chengjian
12 Zhang, Zhimin
12 Zhao, Jingjun
11 Abbasbandy, Saeid
11 Haeri, Mohammad
11 Lima, Pedro Miguel
11 Matouk, Ahmed Ezzat
11 Saadatmandi, Abbas
11 Xu, Wei
11 Xu, Yang
11 Zayernouri, Mohsen
10 Ahmadian, Ali
10 Burrage, Kevin
10 Doungmo Goufo, Emile Franc
10 Jin, Bangti
10 Mohebbi, Akbar
10 Shah, Kamal
10 Singh, Vineet Kumar
10 Torres, Delfim Fernando Marado
10 Trujillo, Juan J.
10 Xu, Da
10 Yüzbaşı, Şuayip
10 Zhang, Jiwei
10 Zhou, Zhi
9 Baishya, Chandrali
9 Ding, Xiaohua
9 El-Sayed, Ahmed Mohamed Ahmed
9 Govindaraj, Venkatesan
9 Hashim, Ishak
9 Hendy, Ahmed S.
9 Lenka, Bichitra Kumar
9 Lu, Shujuan
9 Popolizio, Marina
9 Raja, Muhammad Asif Zahoor
9 Roul, Pradip
9 Sun, Hongguang
9 ur Rehman, Mujeeb
9 Vikerpuur, Mikk
9 Yang, Lixin
9 Zhou, Yong
9 Zhu, Yuanguo
8 Abdeljawad, Thabet
8 Abdo, Mohammed Salem
8 Atanackovic, Teodor M.
8 Cao, Wanrong
8 Chen, Guanrong
...and 3,788 more Authors
all top 5

Cited in 343 Serials

135 Journal of Computational and Applied Mathematics
133 Chaos, Solitons and Fractals
121 Mathematical Methods in the Applied Sciences
113 Computers & Mathematics with Applications
112 Communications in Nonlinear Science and Numerical Simulation
110 Fractional Calculus & Applied Analysis
107 Applied Mathematics and Computation
102 Nonlinear Dynamics
100 Advances in Difference Equations
91 Applied Numerical Mathematics
66 Journal of Scientific Computing
59 Mathematics and Computers in Simulation
54 Abstract and Applied Analysis
51 Computational and Applied Mathematics
48 Numerical Algorithms
47 Applied Mathematical Modelling
47 International Journal of Computer Mathematics
46 Journal of Computational Physics
45 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
40 Mathematical Problems in Engineering
32 Numerical Methods for Partial Differential Equations
30 Journal of Applied Mathematics and Computing
28 Discrete Dynamics in Nature and Society
27 Fractals
25 Physica A
25 Applied Mathematics Letters
25 Chaos
22 Journal of Mathematical Analysis and Applications
21 International Journal of Applied and Computational Mathematics
20 Nonlinear Analysis. Theory, Methods & Applications. Series A: Theory and Methods
20 SIAM Journal on Scientific Computing
18 Physics Letters. A
18 International Journal of Nonlinear Sciences and Numerical Simulation
18 AIMS Mathematics
17 International Journal of Biomathematics
17 Advances in Mathematical Physics
15 Computer Methods in Applied Mechanics and Engineering
15 SIAM Journal on Numerical Analysis
15 Complexity
15 Mediterranean Journal of Mathematics
14 Journal of Applied Analysis and Computation
13 Journal of the Franklin Institute
13 Asian Journal of Control
13 Fractional Differential Calculus
12 Computational Methods in Applied Mathematics
12 Boundary Value Problems
12 Chinese Journal of Physics (Taipei)
12 International Journal of Differential Equations
11 Advances in Computational Mathematics
11 Journal of Vibration and Control
11 Nonlinear Analysis. Modelling and Control
11 Discrete and Continuous Dynamical Systems. Series B
11 Discrete and Continuous Dynamical Systems. Series S
11 Mathematical Sciences
10 BIT
10 Journal of Integral Equations and Applications
10 S\(\vec{\text{e}}\)MA Journal
10 Mathematics
9 Advances in Applied Mathematics and Mechanics
9 East Asian Journal on Applied Mathematics
9 Computational Methods for Differential Equations
8 Calcolo
8 Signal Processing
8 Engineering Analysis with Boundary Elements
8 Differential Equations and Dynamical Systems
8 Journal of Applied Mathematics
8 Mathematical Modelling of Natural Phenomena
8 Journal of Function Spaces
7 Journal of Optimization Theory and Applications
7 Numerical Functional Analysis and Optimization
7 Physica D
7 Journal of the Egyptian Mathematical Society
7 Turkish Journal of Mathematics
7 Journal of Nonlinear Science and Applications
7 Journal of Mathematics
7 Open Mathematics
6 Neural Networks
6 Filomat
6 Journal of Mathematical Chemistry
6 Soft Computing
6 Networks and Heterogeneous Media
6 Advances in Differential Equations and Control Processes
6 Journal of Mathematical Modeling
6 International Journal of Systems Science. Principles and Applications of Systems and Integration
6 Communications on Applied Mathematics and Computation
5 International Journal of Modern Physics B
5 Computer Physics Communications
5 Computational Mechanics
5 Mathematical and Computer Modelling
5 Journal of Difference Equations and Applications
5 Mathematical Modelling and Analysis
5 Quantitative Finance
5 Dynamics of Continuous, Discrete & Impulsive Systems. Series A. Mathematical Analysis
5 Nonlinear Analysis. Hybrid Systems
5 Numerical Mathematics: Theory, Methods and Applications
5 AMM. Applied Mathematics and Mechanics. (English Edition)
5 Vestnik KRAUNTS. Fiziko-Matematicheskie Nauki
4 Acta Mechanica
4 Reports on Mathematical Physics
4 Automatica
...and 243 more Serials
all top 5

Cited in 46 Fields

1,565 Ordinary differential equations (34-XX)
1,496 Numerical analysis (65-XX)
831 Partial differential equations (35-XX)
800 Real functions (26-XX)
333 Biology and other natural sciences (92-XX)
324 Integral equations (45-XX)
254 Systems theory; control (93-XX)
225 Dynamical systems and ergodic theory (37-XX)
136 Operator theory (47-XX)
100 Special functions (33-XX)
82 Probability theory and stochastic processes (60-XX)
69 Fluid mechanics (76-XX)
66 Game theory, economics, finance, and other social and behavioral sciences (91-XX)
57 Calculus of variations and optimal control; optimization (49-XX)
54 Mechanics of deformable solids (74-XX)
53 Approximations and expansions (41-XX)
52 Integral transforms, operational calculus (44-XX)
50 Difference and functional equations (39-XX)
46 Statistical mechanics, structure of matter (82-XX)
46 Information and communication theory, circuits (94-XX)
41 Computer science (68-XX)
29 Mechanics of particles and systems (70-XX)
28 Harmonic analysis on Euclidean spaces (42-XX)
25 Operations research, mathematical programming (90-XX)
14 Optics, electromagnetic theory (78-XX)
13 Classical thermodynamics, heat transfer (80-XX)
13 Geophysics (86-XX)
11 Linear and multilinear algebra; matrix theory (15-XX)
11 Quantum theory (81-XX)
9 Measure and integration (28-XX)
8 Functional analysis (46-XX)
7 Functions of a complex variable (30-XX)
6 Combinatorics (05-XX)
5 General and overarching topics; collections (00-XX)
5 Global analysis, analysis on manifolds (58-XX)
5 Statistics (62-XX)
3 Sequences, series, summability (40-XX)
3 General topology (54-XX)
2 Mathematical logic and foundations (03-XX)
2 Potential theory (31-XX)
1 Number theory (11-XX)
1 Algebraic geometry (14-XX)
1 Several complex variables and analytic spaces (32-XX)
1 Algebraic topology (55-XX)
1 Relativity and gravitational theory (83-XX)
1 Mathematics education (97-XX)

Citations by Year