×
Author ID: ford.neville-j Recent zbMATH articles by "Ford, Neville J."
Published as: Ford, Neville J.; Ford, N. J.; Ford, Neville
External Links: ORCID
Documents Indexed: 94 Publications since 1988, including 2 Books
3 Contributions as Editor
Reviewing Activity: 245 Reviews
Co-Authors: 55 Co-Authors with 93 Joint Publications
1,304 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

82 Publications have been cited 3,671 times in 2,478 Documents Cited by Year
A predictor-corrector approach for the numerical solution of fractional differential equations. Zbl 1009.65049
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
771
2002
Analysis of fractional differential equations. Zbl 1014.34003
Diethelm, Kai; Ford, Neville J.
613
2002
Detailed error analysis for a fractional Adams method. Zbl 1055.65098
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
371
2004
Algorithms for the fractional calculus: a selection of numerical methods. Zbl 1119.65352
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
235
2005
Multi-order fractional differential equations and their numerical solution. Zbl 1060.65070
Diethelm, Kai; Ford, Neville J.
123
2004
Numerical solution of the Bagley-Torvik equation. Zbl 1035.65067
Diethelm, K.; Ford, N. J.
120
2002
A finite element method for time fractional partial differential equations. Zbl 1273.65142
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
104
2011
Numerical analysis for distributed-order differential equations. Zbl 1159.65103
Diethelm, Kai; Ford, Neville J.
103
2009
The numerical solution of fractional differential equations: speed versus accuracy. Zbl 0976.65062
Ford, Neville J.; Simpson, A. Charles
96
2001
The numerical solution of linear multi-term fractional differential equations: Systems of equations. Zbl 1019.65048
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
79
2002
An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. Zbl 1381.65070
Yan, Yubin; Khan, Monzorul; Ford, Neville J.
75
2018
Analysis and numerical methods for fractional differential equations with delay. Zbl 1291.65214
Morgado, M. L.; Ford, N. J.; Lima, P. M.
71
2013
Pitfalls in fast numerical solvers for fractional differential equations. Zbl 1078.65550
Diethelm, Kai; Ford, Judith M.; Ford, Neville J.; Weilbeer, Marc
71
2006
Fractional boundary value problems: analysis and numerical methods. Zbl 1273.65098
Ford, Neville J.; Morgado, M. Luísa
52
2011
Higher order numerical methods for solving fractional differential equations. Zbl 1304.65173
Yan, Yubin; Pal, Kamal; Ford, Neville J.
48
2014
Nonpolynomial collocation approximation of solutions to fractional differential equations. Zbl 1312.65124
Ford, Neville J.; Morgado, M. Luísa; Rebelo, Magda
44
2013
Collocation methods for fractional integro-differential equations with weakly singular kernels. Zbl 1298.65197
Zhao, Jingjun; Xiao, Jingyu; Ford, Neville J.
43
2014
Numerical Hopf bifurcation for a class of delay differential equations. Zbl 0946.65065
Wulf, Volker; Ford, Neville J.
38
2000
Distributed order equations as boundary value problems. Zbl 1268.45005
Ford, N. J.; Morgado, M. L.
33
2012
Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. Zbl 1166.65066
Ford, Neville J.; Connolly, Joseph A.
31
2009
Comparison of numerical methods for fractional differential equations. Zbl 1133.65115
Ford, Neville J.; Connolly, Joseph A.
29
2006
Stability properties of a scheme for the approximate solution of a delay- integro-differential equation. Zbl 0754.65111
Baker, Christopher T. H.; Ford, Neville J.
28
1992
An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Zbl 1330.65130
Ford, N. J.; Morgado, M. L.; Rebelo, M.
28
2015
An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Zbl 1377.65102
Ford, Neville J.; Yan, Yubin
27
2017
The use of boundary locus plots in the identification of bifurcation points in numerical approximation of delay differential equations. Zbl 0941.65132
Ford, Neville J.; Wulf, Volker
27
1999
Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Zbl 1357.65198
Morgado, Maria Luísa; Rebelo, Magda; Ferrás, Luis L.; Ford, Neville J.
26
2017
Volterra integral equations and fractional calculus: do neighboring solutions intersect? Zbl 1238.45003
Diethelm, Kai; Ford, Neville J.
25
2012
A numerical method for the fractional Schrödinger type equation of spatial dimension two. Zbl 1312.65132
Ford, Neville; Rodrigues, M. Manuela; Vieira, Nelson
23
2013
Numerical analysis of a two-parameter fractional telegraph equation. Zbl 1302.65187
Ford, Neville J.; Rodrigues, M. Manuela; Xiao, Jingyu; Yan, Yubin
23
2013
Numerical solution methods for distributed order differential equations. Zbl 1032.65070
Diethelm, Kai; Ford, Neville J.
23
2001
A nonpolynomial collocation method for fractional terminal value problems. Zbl 1297.65076
Ford, N. J.; Morgado, M. L.; Rebelo, M.
19
2015
Some time stepping methods for fractional diffusion problems with nonsmooth data. Zbl 1383.65097
Yang, Yan; Yan, Yubin; Ford, Neville J.
16
2018
Error estimates of a high order numerical method for solving linear fractional differential equations. Zbl 1357.65089
Li, Zhiqiang; Yan, Yubin; Ford, Neville J.
15
2017
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
15
2009
Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. Zbl 0858.65137
Ford, Neville J.; Baker, Christopher T. H.
13
1996
An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Zbl 1327.65173
Ford, Neville J.; Pal, Kamal; Yan, Yubin
13
2015
Numerical methods for a Volterra integral equation with nonsmooth solutions. Zbl 1092.65119
Diogo, Teresa; Ford, Neville J.; Lima, Pedro; Valtchev, Svilen
11
2006
High order numerical methods for fractional terminal value problems. Zbl 1285.65049
Ford, Neville J.; Morgado, Maria L.; Rebelo, Magda
11
2014
Some applications of the boundary-locus method and the method of D- partitions. Zbl 0726.65152
Baker, Christopher T. H.; Ford, Neville J.
10
1991
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
10
2009
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
9
2010
Stability of a numerical method for a space-time-fractional telegraph equation. Zbl 1284.65154
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
9
2012
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
8
2010
Numerical analysis of a singular integral equation. Zbl 1082.65140
Diogo, Teresa; Edwards, John T.; Ford, Neville J.; Thomas, Sophy M.
8
2005
A note on the well-posedness of terminal value problems for fractional differential equations. Zbl 1406.34009
Diethelm, Kai; Ford, Neville J.
8
2018
Volterra integral equations with non-Lipschitz nonlinearity. Zbl 0897.65088
Frischmuth, Kurt; Ford, Neville J.; Edwards, John T.
7
1997
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0746.65097
Baker, Christopher T. H.; Ford, Neville J.
6
1990
Fractional Pennes’ bioheat equation: theoretical and numerical studies. Zbl 1326.35415
Ferrás, Luis L.; Ford, Neville J.; Morgado, Maria L.; Nóbrega, João M.; Rebelo, Magda S.
6
2015
How do numerical methods perform for delay differential equations undergoing a Hopf bifurcation? Zbl 0971.65068
Ford, Neville J.; Wulf, Volker
6
2000
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
6
2002
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
5
2010
On the decay of the elements of inverse triangular Toeplitz matrices. Zbl 1317.15027
Ford, Neville J.; Savostyanov, Dmitry V.; Zamarashkin, Nickolai L.
5
2014
Nonlinear Volterra integro-differential equations – stability and numerical stability of \(\theta\)-methods. Zbl 0944.65150
Ford, Neville J.; Baker, Christopher T. H.; Roberts, J. A.
5
1998
Bifurcations in approximate solutions of stochastic delay differential equations. Zbl 1080.34053
Baker, Christopher T. H.; Ford, Judith M.; Ford, Neville J.
5
2004
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
4
2010
Boundedness and stability of solutions to difference equations. Zbl 1002.39025
Edwards, John T.; Ford, Neville J.
4
2002
Solution of a singular integral equation by a split-interval method. Zbl 1116.65129
Diogo, Teresa; Ford, Neville J.; Lima, Pedro M.; Thomas, Sophy M.
4
2007
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Convergence of linear multistep methods for a class of delay-integro- differential equations. Zbl 0656.65117
Baker, Christopher T. H.; Ford, Neville J.
3
1988
Insight into the qualitative behaviour of numerical solutions to some delay differential equations. Zbl 0944.65091
Wulf, Volker; Ford, Neville J.
3
1998
Bifurcations in numerical methods for Volterra integro-differential equations. Zbl 1064.65154
Edwards, John T.; Ford, Neville J.; Roberts, Jason A.
3
2003
Stability, structural stability and numerical methods for fractional boundary value problems. Zbl 1262.65082
Ford, Neville J.; Morgado, M. Luísa
3
2013
Numerical modelling of qualitative behaviour of solutions to convolution integral equations. Zbl 1125.65118
Ford, Neville J.; Diogo, Teresa; Ford, Judith M.; Lima, Pedro
3
2007
Characterising small solutions in delay differential equations through numerical approximations. Zbl 1030.34059
Ford, Neville J.; Verduyn Lunel, Sjoerd M.
3
2002
Numerical investigation of \(D\)-bifurcations for a stochastic delay logistic equation. Zbl 1073.60063
Ford, Neville J.; Norton, Stewart J.
3
2005
High-order methods for systems of fractional ordinary differential equations and their application to time-fractional diffusion equations. Zbl 07465789
Ferrás, Luís L.; Ford, Neville; Morgado, Maria Luísa; Rebelo, Magda
3
2021
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0794.65096
Baker, Christopher T. H.; Ford, Neville J.
2
1993
Introducing formal methods: a less mathematical approach. Zbl 0850.68232
Ford, Neville; Ford, Judith
2
1993
Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances. Zbl 1227.65061
Ferreira, José M.; Ford, Neville J.; Malique, Md. Abdul; Pinelas, Sandra; Yan, Yubin
2
2011
Preserving transient behaviour in numerical solutions of Volterra integral equations of convolution type. Zbl 0965.65146
Ford, Neville J.; Baker, Christopher T. H.
2
2000
Simulation of grain-boundary diffusion creep: analysis of some new numerical techniques. Zbl 1321.74018
Ford, J. M.; Ford, N. J.; Wheeler, J.
2
2004
Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Zbl 1410.76286
Ferrás, L. L.; Ford, Neville J.; Morgado, Maria Luísa; Rebelo, Magda; McKinley, Gareth H.; Nóbrega, João M.
2
2018
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
2
2017
Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Zbl 1135.34336
Norton, Stewart J.; Ford, Neville J.
1
2006
Numerical treatment of oscillatory functional differential equations. Zbl 1191.65083
Ford, Neville J.; Yan, Yubin; Malique, Md. Abdul
1
2010
Numerical methods for multi-term fractional boundary value problems. Zbl 1320.34008
Ford, N. J.; Morgado, M. L.
1
2013
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
1
2014
Numerical modelling by delay and Volterra functional differential equations. Zbl 1094.65133
Baker, C. T. H.; Bocharov, G. A.; Filiz, A.; Ford, N. J.; Paul, C. A. H.; Rihan, F. A.; Tang, A.; Thomas, R. M.; Tian, H.; Willé, D. R.
1
2001
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Flexible parallelization of fast wavelet transforms. Zbl 1054.65132
Ford, Judith M.; Chen, Ke; Ford, Neville J.
1
2003
Characteristic functions of differential equations with deviating arguments. Zbl 1443.34061
Baker, Christopher T. H.; Ford, Neville J.
1
2020
High-order methods for systems of fractional ordinary differential equations and their application to time-fractional diffusion equations. Zbl 07465789
Ferrás, Luís L.; Ford, Neville; Morgado, Maria Luísa; Rebelo, Magda
3
2021
Characteristic functions of differential equations with deviating arguments. Zbl 1443.34061
Baker, Christopher T. H.; Ford, Neville J.
1
2020
An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. Zbl 1381.65070
Yan, Yubin; Khan, Monzorul; Ford, Neville J.
75
2018
Some time stepping methods for fractional diffusion problems with nonsmooth data. Zbl 1383.65097
Yang, Yan; Yan, Yubin; Ford, Neville J.
16
2018
A note on the well-posedness of terminal value problems for fractional differential equations. Zbl 1406.34009
Diethelm, Kai; Ford, Neville J.
8
2018
Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Zbl 1410.76286
Ferrás, L. L.; Ford, Neville J.; Morgado, Maria Luísa; Rebelo, Magda; McKinley, Gareth H.; Nóbrega, João M.
2
2018
An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Zbl 1377.65102
Ford, Neville J.; Yan, Yubin
27
2017
Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Zbl 1357.65198
Morgado, Maria Luísa; Rebelo, Magda; Ferrás, Luis L.; Ford, Neville J.
26
2017
Error estimates of a high order numerical method for solving linear fractional differential equations. Zbl 1357.65089
Li, Zhiqiang; Yan, Yubin; Ford, Neville J.
15
2017
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
2
2017
An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Zbl 1330.65130
Ford, N. J.; Morgado, M. L.; Rebelo, M.
28
2015
A nonpolynomial collocation method for fractional terminal value problems. Zbl 1297.65076
Ford, N. J.; Morgado, M. L.; Rebelo, M.
19
2015
An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Zbl 1327.65173
Ford, Neville J.; Pal, Kamal; Yan, Yubin
13
2015
Fractional Pennes’ bioheat equation: theoretical and numerical studies. Zbl 1326.35415
Ferrás, Luis L.; Ford, Neville J.; Morgado, Maria L.; Nóbrega, João M.; Rebelo, Magda S.
6
2015
Higher order numerical methods for solving fractional differential equations. Zbl 1304.65173
Yan, Yubin; Pal, Kamal; Ford, Neville J.
48
2014
Collocation methods for fractional integro-differential equations with weakly singular kernels. Zbl 1298.65197
Zhao, Jingjun; Xiao, Jingyu; Ford, Neville J.
43
2014
High order numerical methods for fractional terminal value problems. Zbl 1285.65049
Ford, Neville J.; Morgado, Maria L.; Rebelo, Magda
11
2014
On the decay of the elements of inverse triangular Toeplitz matrices. Zbl 1317.15027
Ford, Neville J.; Savostyanov, Dmitry V.; Zamarashkin, Nickolai L.
5
2014
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
1
2014
Analysis and numerical methods for fractional differential equations with delay. Zbl 1291.65214
Morgado, M. L.; Ford, N. J.; Lima, P. M.
71
2013
Nonpolynomial collocation approximation of solutions to fractional differential equations. Zbl 1312.65124
Ford, Neville J.; Morgado, M. Luísa; Rebelo, Magda
44
2013
A numerical method for the fractional Schrödinger type equation of spatial dimension two. Zbl 1312.65132
Ford, Neville; Rodrigues, M. Manuela; Vieira, Nelson
23
2013
Numerical analysis of a two-parameter fractional telegraph equation. Zbl 1302.65187
Ford, Neville J.; Rodrigues, M. Manuela; Xiao, Jingyu; Yan, Yubin
23
2013
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Stability, structural stability and numerical methods for fractional boundary value problems. Zbl 1262.65082
Ford, Neville J.; Morgado, M. Luísa
3
2013
Numerical methods for multi-term fractional boundary value problems. Zbl 1320.34008
Ford, N. J.; Morgado, M. L.
1
2013
Distributed order equations as boundary value problems. Zbl 1268.45005
Ford, N. J.; Morgado, M. L.
33
2012
Volterra integral equations and fractional calculus: do neighboring solutions intersect? Zbl 1238.45003
Diethelm, Kai; Ford, Neville J.
25
2012
Stability of a numerical method for a space-time-fractional telegraph equation. Zbl 1284.65154
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
9
2012
A finite element method for time fractional partial differential equations. Zbl 1273.65142
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
104
2011
Fractional boundary value problems: analysis and numerical methods. Zbl 1273.65098
Ford, Neville J.; Morgado, M. Luísa
52
2011
Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances. Zbl 1227.65061
Ferreira, José M.; Ford, Neville J.; Malique, Md. Abdul; Pinelas, Sandra; Yan, Yubin
2
2011
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
9
2010
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
8
2010
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
5
2010
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
4
2010
Numerical treatment of oscillatory functional differential equations. Zbl 1191.65083
Ford, Neville J.; Yan, Yubin; Malique, Md. Abdul
1
2010
Numerical analysis for distributed-order differential equations. Zbl 1159.65103
Diethelm, Kai; Ford, Neville J.
103
2009
Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. Zbl 1166.65066
Ford, Neville J.; Connolly, Joseph A.
31
2009
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
15
2009
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
10
2009
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
Solution of a singular integral equation by a split-interval method. Zbl 1116.65129
Diogo, Teresa; Ford, Neville J.; Lima, Pedro M.; Thomas, Sophy M.
4
2007
Numerical modelling of qualitative behaviour of solutions to convolution integral equations. Zbl 1125.65118
Ford, Neville J.; Diogo, Teresa; Ford, Judith M.; Lima, Pedro
3
2007
Pitfalls in fast numerical solvers for fractional differential equations. Zbl 1078.65550
Diethelm, Kai; Ford, Judith M.; Ford, Neville J.; Weilbeer, Marc
71
2006
Comparison of numerical methods for fractional differential equations. Zbl 1133.65115
Ford, Neville J.; Connolly, Joseph A.
29
2006
Numerical methods for a Volterra integral equation with nonsmooth solutions. Zbl 1092.65119
Diogo, Teresa; Ford, Neville J.; Lima, Pedro; Valtchev, Svilen
11
2006
Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Zbl 1135.34336
Norton, Stewart J.; Ford, Neville J.
1
2006
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Algorithms for the fractional calculus: a selection of numerical methods. Zbl 1119.65352
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
235
2005
Numerical analysis of a singular integral equation. Zbl 1082.65140
Diogo, Teresa; Edwards, John T.; Ford, Neville J.; Thomas, Sophy M.
8
2005
Numerical investigation of \(D\)-bifurcations for a stochastic delay logistic equation. Zbl 1073.60063
Ford, Neville J.; Norton, Stewart J.
3
2005
Detailed error analysis for a fractional Adams method. Zbl 1055.65098
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
371
2004
Multi-order fractional differential equations and their numerical solution. Zbl 1060.65070
Diethelm, Kai; Ford, Neville J.
123
2004
Bifurcations in approximate solutions of stochastic delay differential equations. Zbl 1080.34053
Baker, Christopher T. H.; Ford, Judith M.; Ford, Neville J.
5
2004
Simulation of grain-boundary diffusion creep: analysis of some new numerical techniques. Zbl 1321.74018
Ford, J. M.; Ford, N. J.; Wheeler, J.
2
2004
Bifurcations in numerical methods for Volterra integro-differential equations. Zbl 1064.65154
Edwards, John T.; Ford, Neville J.; Roberts, Jason A.
3
2003
Flexible parallelization of fast wavelet transforms. Zbl 1054.65132
Ford, Judith M.; Chen, Ke; Ford, Neville J.
1
2003
A predictor-corrector approach for the numerical solution of fractional differential equations. Zbl 1009.65049
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
771
2002
Analysis of fractional differential equations. Zbl 1014.34003
Diethelm, Kai; Ford, Neville J.
613
2002
Numerical solution of the Bagley-Torvik equation. Zbl 1035.65067
Diethelm, K.; Ford, N. J.
120
2002
The numerical solution of linear multi-term fractional differential equations: Systems of equations. Zbl 1019.65048
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
79
2002
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
6
2002
Boundedness and stability of solutions to difference equations. Zbl 1002.39025
Edwards, John T.; Ford, Neville J.
4
2002
Characterising small solutions in delay differential equations through numerical approximations. Zbl 1030.34059
Ford, Neville J.; Verduyn Lunel, Sjoerd M.
3
2002
The numerical solution of fractional differential equations: speed versus accuracy. Zbl 0976.65062
Ford, Neville J.; Simpson, A. Charles
96
2001
Numerical solution methods for distributed order differential equations. Zbl 1032.65070
Diethelm, Kai; Ford, Neville J.
23
2001
Numerical modelling by delay and Volterra functional differential equations. Zbl 1094.65133
Baker, C. T. H.; Bocharov, G. A.; Filiz, A.; Ford, N. J.; Paul, C. A. H.; Rihan, F. A.; Tang, A.; Thomas, R. M.; Tian, H.; Willé, D. R.
1
2001
Numerical Hopf bifurcation for a class of delay differential equations. Zbl 0946.65065
Wulf, Volker; Ford, Neville J.
38
2000
How do numerical methods perform for delay differential equations undergoing a Hopf bifurcation? Zbl 0971.65068
Ford, Neville J.; Wulf, Volker
6
2000
Preserving transient behaviour in numerical solutions of Volterra integral equations of convolution type. Zbl 0965.65146
Ford, Neville J.; Baker, Christopher T. H.
2
2000
The use of boundary locus plots in the identification of bifurcation points in numerical approximation of delay differential equations. Zbl 0941.65132
Ford, Neville J.; Wulf, Volker
27
1999
Nonlinear Volterra integro-differential equations – stability and numerical stability of \(\theta\)-methods. Zbl 0944.65150
Ford, Neville J.; Baker, Christopher T. H.; Roberts, J. A.
5
1998
Insight into the qualitative behaviour of numerical solutions to some delay differential equations. Zbl 0944.65091
Wulf, Volker; Ford, Neville J.
3
1998
Volterra integral equations with non-Lipschitz nonlinearity. Zbl 0897.65088
Frischmuth, Kurt; Ford, Neville J.; Edwards, John T.
7
1997
Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. Zbl 0858.65137
Ford, Neville J.; Baker, Christopher T. H.
13
1996
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0794.65096
Baker, Christopher T. H.; Ford, Neville J.
2
1993
Introducing formal methods: a less mathematical approach. Zbl 0850.68232
Ford, Neville; Ford, Judith
2
1993
Stability properties of a scheme for the approximate solution of a delay- integro-differential equation. Zbl 0754.65111
Baker, Christopher T. H.; Ford, Neville J.
28
1992
Some applications of the boundary-locus method and the method of D- partitions. Zbl 0726.65152
Baker, Christopher T. H.; Ford, Neville J.
10
1991
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0746.65097
Baker, Christopher T. H.; Ford, Neville J.
6
1990
Convergence of linear multistep methods for a class of delay-integro- differential equations. Zbl 0656.65117
Baker, Christopher T. H.; Ford, Neville J.
3
1988
all top 5

Cited by 3,291 Authors

69 Băleanu, Dumitru I.
49 Ford, Neville J.
35 Li, Changpin
34 Dehghan Takht Fooladi, Mehdi
33 Liu, Fawang
30 Gómez-Aguilar, José Francisco
30 Yan, Yubin
25 Daftardar-Gejji, Varsha
24 Momani, Shaher M.
23 Abbaszadeh, Mostafa
23 Ahmad, Bashir
21 Benchohra, Mouffak
21 Li, Hong
21 Liu, Yang
21 Turner, Ian William
21 Zeng, Fanhai
20 Garrappa, Roberto
19 Bhalekar, Sachin
19 Wang, Hong
19 Zheng, Xiangcheng
18 Danca, Marius-Florin
18 Deng, Weihua
18 Karniadakis, George Em
17 Javidi, Mohammad
17 Machado, José António Tenreiro
17 Nieto Roig, Juan Jose
16 Atangana, Abdon
16 Ntouyas, Sotiris K.
15 Chen, Yangquan
15 Diethelm, Kai
15 Pedas, Arvet
14 Agarwal, Ravi P.
13 Al-saedi, Ahmed Eid Salem
13 Bhrawy, Ali Hassan
13 Cao, Jinde
13 Jiang, Xiaoyun
13 Owolabi, Kolade Matthew
13 Yu, Yongguang
12 Abbas, Said
12 Baker, Christopher Thomas Hale
12 Salahshour, Soheil
12 Tamme, Enn
12 Zaky, Mahmoud A.
12 Zhang, Chengjian
12 Zhao, Jingjun
11 Huang, Chengming
11 Kumar, Sachin
11 Lima, Pedro Miguel
11 Odibat, Zaid M.
11 Tavazoei, Mohammad Saleh
11 Wu, Guocheng
11 Xu, Yang
11 Yin, Baoli
11 Zayernouri, Mohsen
10 Jin, Bangti
10 Mohebbi, Akbar
10 Saadatmandi, Abbas
10 Shah, Kamal
10 Sun, Zhizhong
10 Torres, Delfim Fernando Marado
10 Trujillo, Juan J.
10 Xu, Wei
9 Abbasbandy, Saeid
9 Burrage, Kevin
9 Doungmo Goufo, Emile Franc
9 Haeri, Mohammad
9 Popolizio, Marina
9 Rebelo, Magda S.
9 Sun, Hongguang
9 Yüzbaşı, Şuayip
9 Zhou, Zhi
8 Ahmadian, Ali
8 Atanackovic, Teodor M.
8 Ding, Xiaohua
8 El-Sayed, Ahmed Mohamed Ahmed
8 Escobar-Jiménez, Ricardo Fabricio
8 Hashim, Ishak
8 Kumar, Sunil
8 Lu, Shujuan
8 Lumb, Patricia M.
8 Ordokhani, Yadollah
8 Pham, Viet-Thanh
8 Saha Ray, Santanu
8 Singh, Vineet Kumar
8 Wang, Zhen
8 Wei, LeiLei
8 Xu, Chuanju
8 Yang, Lixin
8 Zhang, Jiwei
7 Abdeljawad, Thabet
7 Aghababa, Mohammad Pourmahmood
7 Almeida, Ricardo
7 Anh, Vo V.
7 Cafagna, Donato
7 Chen, Guanrong
7 Feng, Libo
7 Gao, Guanghua
7 Ghanbari, Behzad
7 Grassi, Giuseppe
7 Jafari, Hossein
...and 3,191 more Authors
all top 5

Cited in 302 Serials

128 Chaos, Solitons and Fractals
126 Journal of Computational and Applied Mathematics
107 Computers & Mathematics with Applications
104 Applied Mathematics and Computation
102 Fractional Calculus & Applied Analysis
101 Nonlinear Dynamics
99 Advances in Difference Equations
79 Applied Numerical Mathematics
77 Communications in Nonlinear Science and Numerical Simulation
56 Journal of Scientific Computing
54 Abstract and Applied Analysis
45 International Journal of Computer Mathematics
44 Journal of Computational Physics
44 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
42 Mathematics and Computers in Simulation
41 Applied Mathematical Modelling
40 Numerical Algorithms
40 Computational and Applied Mathematics
38 Mathematical Problems in Engineering
27 Fractals
27 Discrete Dynamics in Nature and Society
26 Journal of Applied Mathematics and Computing
22 Journal of Mathematical Analysis and Applications
22 Applied Mathematics Letters
21 Physica A
21 International Journal of Applied and Computational Mathematics
20 Nonlinear Analysis. Theory, Methods & Applications. Series A: Theory and Methods
20 SIAM Journal on Scientific Computing
19 Chaos
18 AIMS Mathematics
17 International Journal of Nonlinear Sciences and Numerical Simulation
15 Computer Methods in Applied Mechanics and Engineering
15 Complexity
15 Advances in Mathematical Physics
14 SIAM Journal on Numerical Analysis
14 International Journal of Biomathematics
13 Mathematical Methods in the Applied Sciences
12 Journal of the Franklin Institute
12 Mediterranean Journal of Mathematics
11 Journal of Vibration and Control
11 Computational Methods in Applied Mathematics
11 International Journal of Differential Equations
11 Fractional Differential Calculus
10 Mathematics
9 Journal of Integral Equations and Applications
9 Discrete and Continuous Dynamical Systems. Series B
9 Discrete and Continuous Dynamical Systems. Series S
9 Advances in Applied Mathematics and Mechanics
9 S\(\vec{\text{e}}\)MA Journal
8 BIT
8 Signal Processing
8 Advances in Computational Mathematics
8 Engineering Analysis with Boundary Elements
8 Differential Equations and Dynamical Systems
8 Journal of Applied Mathematics
8 Boundary Value Problems
8 Mathematical Modelling of Natural Phenomena
8 Mathematical Sciences
8 East Asian Journal on Applied Mathematics
8 Journal of Function Spaces
7 Calcolo
7 Journal of Optimization Theory and Applications
7 Numerical Functional Analysis and Optimization
7 Journal of the Egyptian Mathematical Society
7 Nonlinear Analysis. Modelling and Control
7 Journal of Nonlinear Science and Applications
7 Journal of Mathematics
7 Computational Methods for Differential Equations
6 Neural Networks
6 Turkish Journal of Mathematics
6 Filomat
6 Soft Computing
6 Advances in Differential Equations and Control Processes
6 Asian Journal of Control
6 Open Mathematics
6 Communications on Applied Mathematics and Computation
5 Physica D
5 Computational Mechanics
5 Mathematical and Computer Modelling
5 Journal of Difference Equations and Applications
5 Nonlinear Analysis. Hybrid Systems
5 Journal of Applied Analysis and Computation
5 International Journal of Systems Science. Principles and Applications of Systems and Integration
5 AMM. Applied Mathematics and Mechanics. (English Edition)
4 Acta Mechanica
4 Automatica
4 Circuits, Systems, and Signal Processing
4 Numerical Methods for Partial Differential Equations
4 Journal of Inverse and Ill-Posed Problems
4 Mathematical Modelling and Analysis
4 Quantitative Finance
4 Dynamics of Continuous, Discrete & Impulsive Systems. Series A. Mathematical Analysis
4 Bulletin of the Malaysian Mathematical Sciences Society. Second Series
4 Frontiers of Mathematics in China
4 Tbilisi Mathematical Journal
3 International Journal of Modern Physics B
3 Computers and Fluids
3 International Journal of Control
3 Inverse Problems
3 Reports on Mathematical Physics
...and 202 more Serials
all top 5

Cited in 43 Fields

1,308 Ordinary differential equations (34-XX)
1,238 Numerical analysis (65-XX)
656 Real functions (26-XX)
644 Partial differential equations (35-XX)
284 Integral equations (45-XX)
253 Biology and other natural sciences (92-XX)
212 Systems theory; control (93-XX)
191 Dynamical systems and ergodic theory (37-XX)
112 Operator theory (47-XX)
76 Special functions (33-XX)
64 Probability theory and stochastic processes (60-XX)
55 Fluid mechanics (76-XX)
49 Mechanics of deformable solids (74-XX)
48 Game theory, economics, finance, and other social and behavioral sciences (91-XX)
47 Difference and functional equations (39-XX)
44 Approximations and expansions (41-XX)
43 Information and communication theory, circuits (94-XX)
42 Statistical mechanics, structure of matter (82-XX)
41 Calculus of variations and optimal control; optimization (49-XX)
39 Integral transforms, operational calculus (44-XX)
26 Computer science (68-XX)
26 Mechanics of particles and systems (70-XX)
25 Operations research, mathematical programming (90-XX)
20 Harmonic analysis on Euclidean spaces (42-XX)
13 Optics, electromagnetic theory (78-XX)
10 Linear and multilinear algebra; matrix theory (15-XX)
10 Geophysics (86-XX)
9 Classical thermodynamics, heat transfer (80-XX)
9 Quantum theory (81-XX)
8 Functions of a complex variable (30-XX)
8 Functional analysis (46-XX)
7 Measure and integration (28-XX)
6 Statistics (62-XX)
5 General and overarching topics; collections (00-XX)
5 Global analysis, analysis on manifolds (58-XX)
3 Combinatorics (05-XX)
2 Sequences, series, summability (40-XX)
2 General topology (54-XX)
1 Number theory (11-XX)
1 Potential theory (31-XX)
1 Several complex variables and analytic spaces (32-XX)
1 Relativity and gravitational theory (83-XX)
1 Mathematics education (97-XX)

Citations by Year