×
Compute Distance To:
Author ID: ford.neville-j Recent zbMATH articles by "Ford, Neville J."
Published as: Ford, Neville J.; Ford, N. J.; Ford, Neville
External Links: ORCID
Documents Indexed: 94 Publications since 1988, including 2 Books
3 Contributions as Editor
Reviewing Activity: 238 Reviews
Co-Authors: 54 Co-Authors with 93 Joint Publications
1,326 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

82 Publications have been cited 3,263 times in 2,195 Documents Cited by Year
A predictor-corrector approach for the numerical solution of fractional differential equations. Zbl 1009.65049
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
673
2002
Analysis of fractional differential equations. Zbl 1014.34003
Diethelm, Kai; Ford, Neville J.
547
2002
Detailed error analysis for a fractional Adams method. Zbl 1055.65098
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
340
2004
Algorithms for the fractional calculus: a selection of numerical methods. Zbl 1119.65352
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
214
2005
Multi-order fractional differential equations and their numerical solution. Zbl 1060.65070
Diethelm, Kai; Ford, Neville J.
112
2004
Numerical solution of the Bagley-Torvik equation. Zbl 1035.65067
Diethelm, K.; Ford, N. J.
108
2002
A finite element method for time fractional partial differential equations. Zbl 1273.65142
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
87
2011
Numerical analysis for distributed-order differential equations. Zbl 1159.65103
Diethelm, Kai; Ford, Neville J.
86
2009
The numerical solution of fractional differential equations: speed versus accuracy. Zbl 0976.65062
Ford, Neville J.; Simpson, A. Charles
86
2001
The numerical solution of linear multi-term fractional differential equations: Systems of equations. Zbl 1019.65048
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
75
2002
Pitfalls in fast numerical solvers for fractional differential equations. Zbl 1078.65550
Diethelm, Kai; Ford, Judith M.; Ford, Neville J.; Weilbeer, Marc
64
2006
An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. Zbl 1381.65070
Yan, Yubin; Khan, Monzorul; Ford, Neville J.
60
2018
Analysis and numerical methods for fractional differential equations with delay. Zbl 1291.65214
Morgado, M. L.; Ford, N. J.; Lima, P. M.
59
2013
Fractional boundary value problems: analysis and numerical methods. Zbl 1273.65098
Ford, Neville J.; Morgado, M. Luísa
46
2011
Nonpolynomial collocation approximation of solutions to fractional differential equations. Zbl 1312.65124
Ford, Neville J.; Morgado, M. Luísa; Rebelo, Magda
40
2013
Higher order numerical methods for solving fractional differential equations. Zbl 1304.65173
Yan, Yubin; Pal, Kamal; Ford, Neville J.
39
2014
Numerical Hopf bifurcation for a class of delay differential equations. Zbl 0946.65065
Wulf, Volker; Ford, Neville J.
37
2000
Collocation methods for fractional integro-differential equations with weakly singular kernels. Zbl 1298.65197
Zhao, Jingjun; Xiao, Jingyu; Ford, Neville J.
36
2014
Distributed order equations as boundary value problems. Zbl 1268.45005
Ford, N. J.; Morgado, M. L.
29
2012
Stability properties of a scheme for the approximate solution of a delay- integro-differential equation. Zbl 0754.65111
Baker, Christopher T. H.; Ford, Neville J.
28
1992
Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. Zbl 1166.65066
Ford, Neville J.; Connolly, Joseph A.
28
2009
The use of boundary locus plots in the identification of bifurcation points in numerical approximation of delay differential equations. Zbl 0941.65132
Ford, Neville J.; Wulf, Volker
27
1999
Comparison of numerical methods for fractional differential equations. Zbl 1133.65115
Ford, Neville J.; Connolly, Joseph A.
27
2006
An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Zbl 1377.65102
Ford, Neville J.; Yan, Yubin
26
2017
An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Zbl 1330.65130
Ford, N. J.; Morgado, M. L.; Rebelo, M.
24
2015
Volterra integral equations and fractional calculus: do neighboring solutions intersect? Zbl 1238.45003
Diethelm, Kai; Ford, Neville J.
22
2012
Numerical solution methods for distributed order differential equations. Zbl 1032.65070
Diethelm, Kai; Ford, Neville J.
22
2001
Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Zbl 1357.65198
Morgado, Maria Luísa; Rebelo, Magda; Ferrás, Luis L.; Ford, Neville J.
21
2017
A numerical method for the fractional Schrödinger type equation of spatial dimension two. Zbl 1312.65132
Ford, Neville; Rodrigues, M. Manuela; Vieira, Nelson
20
2013
Numerical analysis of a two-parameter fractional telegraph equation. Zbl 1302.65187
Ford, Neville J.; Rodrigues, M. Manuela; Xiao, Jingyu; Yan, Yubin
18
2013
A nonpolynomial collocation method for fractional terminal value problems. Zbl 1297.65076
Ford, N. J.; Morgado, M. L.; Rebelo, M.
16
2015
Error estimates of a high order numerical method for solving linear fractional differential equations. Zbl 1357.65089
Li, Zhiqiang; Yan, Yubin; Ford, Neville J.
15
2017
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
14
2009
An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Zbl 1327.65173
Ford, Neville J.; Pal, Kamal; Yan, Yubin
13
2015
Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. Zbl 0858.65137
Ford, Neville J.; Baker, Christopher T. H.
13
1996
Some time stepping methods for fractional diffusion problems with nonsmooth data. Zbl 1383.65097
Yang, Yan; Yan, Yubin; Ford, Neville J.
12
2018
Numerical methods for a Volterra integral equation with nonsmooth solutions. Zbl 1092.65119
Diogo, Teresa; Ford, Neville J.; Lima, Pedro; Valtchev, Svilen
11
2006
Some applications of the boundary-locus method and the method of D- partitions. Zbl 0726.65152
Baker, Christopher T. H.; Ford, Neville J.
10
1991
High order numerical methods for fractional terminal value problems. Zbl 1285.65049
Ford, Neville J.; Morgado, Maria L.; Rebelo, Magda
9
2014
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
9
2009
Numerical analysis of a singular integral equation. Zbl 1082.65140
Diogo, Teresa; Edwards, John T.; Ford, Neville J.; Thomas, Sophy M.
8
2005
Stability of a numerical method for a space-time-fractional telegraph equation. Zbl 1284.65154
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
7
2012
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
7
2010
Volterra integral equations with non-Lipschitz nonlinearity. Zbl 0897.65088
Frischmuth, Kurt; Ford, Neville J.; Edwards, John T.
7
1997
A note on the well-posedness of terminal value problems for fractional differential equations. Zbl 1406.34009
Diethelm, Kai; Ford, Neville J.
7
2018
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0746.65097
Baker, Christopher T. H.; Ford, Neville J.
6
1990
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
6
2010
Fractional Pennes’ bioheat equation: theoretical and numerical studies. Zbl 1326.35415
Ferrás, Luis L.; Ford, Neville J.; Morgado, Maria L.; Nóbrega, João M.; Rebelo, Magda S.
6
2015
How do numerical methods perform for delay differential equations undergoing a Hopf bifurcation? Zbl 0971.65068
Ford, Neville J.; Wulf, Volker
6
2000
Bifurcations in approximate solutions of stochastic delay differential equations. Zbl 1080.34053
Baker, Christopher T. H.; Ford, Judith M.; Ford, Neville J.
5
2004
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
5
2010
Nonlinear Volterra integro-differential equations – stability and numerical stability of \(\theta\)-methods. Zbl 0944.65150
Ford, Neville J.; Baker, Christopher T. H.; Roberts, J. A.
5
1998
Solution of a singular integral equation by a split-interval method. Zbl 1116.65129
Diogo, Teresa; Ford, Neville J.; Lima, Pedro M.; Thomas, Sophy M.
4
2007
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
On the decay of the elements of inverse triangular Toeplitz matrices. Zbl 1317.15027
Ford, Neville J.; Savostyanov, Dmitry V.; Zamarashkin, Nickolai L.
4
2014
Boundedness and stability of solutions to difference equations. Zbl 1002.39025
Edwards, John T.; Ford, Neville J.
4
2002
Characterising small solutions in delay differential equations through numerical approximations. Zbl 1030.34059
Ford, Neville J.; Verduyn Lunel, Sjoerd M.
3
2002
Bifurcations in numerical methods for Volterra integro-differential equations. Zbl 1064.65154
Edwards, John T.; Ford, Neville J.; Roberts, Jason A.
3
2003
Insight into the qualitative behaviour of numerical solutions to some delay differential equations. Zbl 0944.65091
Wulf, Volker; Ford, Neville J.
3
1998
Stability, structural stability and numerical methods for fractional boundary value problems. Zbl 1262.65082
Ford, Neville J.; Morgado, M. Luísa
3
2013
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
3
2010
Numerical modelling of qualitative behaviour of solutions to convolution integral equations. Zbl 1125.65118
Ford, Neville J.; Diogo, Teresa; Ford, Judith M.; Lima, Pedro
3
2007
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
3
2002
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Numerical investigation of \(D\)-bifurcations for a stochastic delay logistic equation. Zbl 1073.60063
Ford, Neville J.; Norton, Stewart J.
3
2005
Convergence of linear multistep methods for a class of delay-integro- differential equations. Zbl 0656.65117
Baker, Christopher T. H.; Ford, Neville J.
2
1988
Preserving transient behaviour in numerical solutions of Volterra integral equations of convolution type. Zbl 0965.65146
Ford, Neville J.; Baker, Christopher T. H.
2
2000
Introducing formal methods: a less mathematical approach. Zbl 0850.68232
Ford, Neville; Ford, Judith
2
1993
Simulation of grain-boundary diffusion creep: analysis of some new numerical techniques. Zbl 1321.74018
Ford, J. M.; Ford, N. J.; Wheeler, J.
2
2004
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
2
2017
Numerical modelling by delay and Volterra functional differential equations. Zbl 1094.65133
Baker, C. T. H.; Bocharov, G. A.; Filiz, A.; Ford, N. J.; Paul, C. A. H.; Rihan, F. A.; Tang, A.; Thomas, R. M.; Tian, H.; Willé, D. R.
1
2001
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances. Zbl 1227.65061
Ferreira, José M.; Ford, Neville J.; Malique, Md. Abdul; Pinelas, Sandra; Yan, Yubin
1
2011
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
1
2014
Numerical treatment of oscillatory functional differential equations. Zbl 1191.65083
Ford, Neville J.; Yan, Yubin; Malique, Md. Abdul
1
2010
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0794.65096
Baker, Christopher T. H.; Ford, Neville J.
1
1993
Flexible parallelization of fast wavelet transforms. Zbl 1054.65132
Ford, Judith M.; Chen, Ke; Ford, Neville J.
1
2003
Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Zbl 1135.34336
Norton, Stewart J.; Ford, Neville J.
1
2006
Characteristic functions of differential equations with deviating arguments. Zbl 1443.34061
Baker, Christopher T. H.; Ford, Neville J.
1
2020
High-order methods for systems of fractional ordinary differential equations and their application to time-fractional diffusion equations. Zbl 07465789
Ferrás, Luís L.; Ford, Neville; Morgado, Maria Luísa; Rebelo, Magda
1
2021
Numerical methods for multi-term fractional boundary value problems. Zbl 1320.34008
Ford, N. J.; Morgado, M. L.
1
2013
Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Zbl 1410.76286
Ferrás, L. L.; Ford, Neville J.; Morgado, Maria Luísa; Rebelo, Magda; McKinley, Gareth H.; Nóbrega, João M.
1
2018
High-order methods for systems of fractional ordinary differential equations and their application to time-fractional diffusion equations. Zbl 07465789
Ferrás, Luís L.; Ford, Neville; Morgado, Maria Luísa; Rebelo, Magda
1
2021
Characteristic functions of differential equations with deviating arguments. Zbl 1443.34061
Baker, Christopher T. H.; Ford, Neville J.
1
2020
An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. Zbl 1381.65070
Yan, Yubin; Khan, Monzorul; Ford, Neville J.
60
2018
Some time stepping methods for fractional diffusion problems with nonsmooth data. Zbl 1383.65097
Yang, Yan; Yan, Yubin; Ford, Neville J.
12
2018
A note on the well-posedness of terminal value problems for fractional differential equations. Zbl 1406.34009
Diethelm, Kai; Ford, Neville J.
7
2018
Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Zbl 1410.76286
Ferrás, L. L.; Ford, Neville J.; Morgado, Maria Luísa; Rebelo, Magda; McKinley, Gareth H.; Nóbrega, João M.
1
2018
An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Zbl 1377.65102
Ford, Neville J.; Yan, Yubin
26
2017
Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Zbl 1357.65198
Morgado, Maria Luísa; Rebelo, Magda; Ferrás, Luis L.; Ford, Neville J.
21
2017
Error estimates of a high order numerical method for solving linear fractional differential equations. Zbl 1357.65089
Li, Zhiqiang; Yan, Yubin; Ford, Neville J.
15
2017
Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation. Zbl 1411.65019
Ford, Neville J.; Lima, Pedro M.; Lumb, Patricia M.
2
2017
An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time. Zbl 1330.65130
Ford, N. J.; Morgado, M. L.; Rebelo, M.
24
2015
A nonpolynomial collocation method for fractional terminal value problems. Zbl 1297.65076
Ford, N. J.; Morgado, M. L.; Rebelo, M.
16
2015
An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Zbl 1327.65173
Ford, Neville J.; Pal, Kamal; Yan, Yubin
13
2015
Fractional Pennes’ bioheat equation: theoretical and numerical studies. Zbl 1326.35415
Ferrás, Luis L.; Ford, Neville J.; Morgado, Maria L.; Nóbrega, João M.; Rebelo, Magda S.
6
2015
Higher order numerical methods for solving fractional differential equations. Zbl 1304.65173
Yan, Yubin; Pal, Kamal; Ford, Neville J.
39
2014
Collocation methods for fractional integro-differential equations with weakly singular kernels. Zbl 1298.65197
Zhao, Jingjun; Xiao, Jingyu; Ford, Neville J.
36
2014
High order numerical methods for fractional terminal value problems. Zbl 1285.65049
Ford, Neville J.; Morgado, Maria L.; Rebelo, Magda
9
2014
On the decay of the elements of inverse triangular Toeplitz matrices. Zbl 1317.15027
Ford, Neville J.; Savostyanov, Dmitry V.; Zamarashkin, Nickolai L.
4
2014
Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons. Zbl 1295.65078
Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
1
2014
Analysis and numerical methods for fractional differential equations with delay. Zbl 1291.65214
Morgado, M. L.; Ford, N. J.; Lima, P. M.
59
2013
Nonpolynomial collocation approximation of solutions to fractional differential equations. Zbl 1312.65124
Ford, Neville J.; Morgado, M. Luísa; Rebelo, Magda
40
2013
A numerical method for the fractional Schrödinger type equation of spatial dimension two. Zbl 1312.65132
Ford, Neville; Rodrigues, M. Manuela; Vieira, Nelson
20
2013
Numerical analysis of a two-parameter fractional telegraph equation. Zbl 1302.65187
Ford, Neville J.; Rodrigues, M. Manuela; Xiao, Jingyu; Yan, Yubin
18
2013
Stability, structural stability and numerical methods for fractional boundary value problems. Zbl 1262.65082
Ford, Neville J.; Morgado, M. Luísa
3
2013
Analysis and computational approximation of a forward-backward equation arising in nerve conduction. Zbl 1320.34106
Lima, P. M.; Teodoro, M. F.; Ford, N. J.; Lumb, P. M.
3
2013
Numerical methods for multi-term fractional boundary value problems. Zbl 1320.34008
Ford, N. J.; Morgado, M. L.
1
2013
Distributed order equations as boundary value problems. Zbl 1268.45005
Ford, N. J.; Morgado, M. L.
29
2012
Volterra integral equations and fractional calculus: do neighboring solutions intersect? Zbl 1238.45003
Diethelm, Kai; Ford, Neville J.
22
2012
Stability of a numerical method for a space-time-fractional telegraph equation. Zbl 1284.65154
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
7
2012
A finite element method for time fractional partial differential equations. Zbl 1273.65142
Ford, Neville J.; Xiao, Jingyu; Yan, Yubin
87
2011
Fractional boundary value problems: analysis and numerical methods. Zbl 1273.65098
Ford, Neville J.; Morgado, M. Luísa
46
2011
Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances. Zbl 1227.65061
Ferreira, José M.; Ford, Neville J.; Malique, Md. Abdul; Pinelas, Sandra; Yan, Yubin
1
2011
The numerical solution of forward-backward differential equations: decomposition and related issues. Zbl 1191.65082
Ford, Neville J.; Lumb, Patricia M.; Lima, Pedro M.; Teodoro, M. Filomena
7
2010
Analytical and numerical investigation of mixed-type functional differential equations. Zbl 1191.65084
Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
6
2010
Mathematical modelling of plant species interactions in a harsh climate. Zbl 1191.92053
Ford, Neville J.; Lumb, Patricia M.; Ekaka-A, Enu
5
2010
Finite element solution of a linear mixed-type functional differential equation. Zbl 1200.65054
Lima, Pedro Miguel; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.
3
2010
Numerical treatment of oscillatory functional differential equations. Zbl 1191.65083
Ford, Neville J.; Yan, Yubin; Malique, Md. Abdul
1
2010
Numerical analysis for distributed-order differential equations. Zbl 1159.65103
Diethelm, Kai; Ford, Neville J.
86
2009
Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. Zbl 1166.65066
Ford, Neville J.; Connolly, Joseph A.
28
2009
Mixed-type functional differential equations: A numerical approach. Zbl 1166.65035
Ford, Neville J.; Lumb, Patricia M.
14
2009
New approach to the numerical solution of forward-backward equations. Zbl 1396.65103
Teodoro, Filomena; Lima, Pedro M.; Ford, Neville J.; Lumb, Patricia M.
9
2009
Numerical modelling of a functional differential equation with deviating arguments using a collocation method. Zbl 1167.65409
Teodoro, M. F.; Ford, N. J.; Lima, P. M.; Lumb, P.
4
2008
Solution of a singular integral equation by a split-interval method. Zbl 1116.65129
Diogo, Teresa; Ford, Neville J.; Lima, Pedro M.; Thomas, Sophy M.
4
2007
Numerical modelling of qualitative behaviour of solutions to convolution integral equations. Zbl 1125.65118
Ford, Neville J.; Diogo, Teresa; Ford, Judith M.; Lima, Pedro
3
2007
Pitfalls in fast numerical solvers for fractional differential equations. Zbl 1078.65550
Diethelm, Kai; Ford, Judith M.; Ford, Neville J.; Weilbeer, Marc
64
2006
Comparison of numerical methods for fractional differential equations. Zbl 1133.65115
Ford, Neville J.; Connolly, Joseph A.
27
2006
Numerical methods for a Volterra integral equation with nonsmooth solutions. Zbl 1092.65119
Diogo, Teresa; Ford, Neville J.; Lima, Pedro; Valtchev, Svilen
11
2006
An algorithm to detect small solutions in linear delay differential equations. Zbl 1092.65058
Ford, Neville J.; Lumb, Patricia M.
1
2006
Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Zbl 1135.34336
Norton, Stewart J.; Ford, Neville J.
1
2006
Algorithms for the fractional calculus: a selection of numerical methods. Zbl 1119.65352
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
214
2005
Numerical analysis of a singular integral equation. Zbl 1082.65140
Diogo, Teresa; Edwards, John T.; Ford, Neville J.; Thomas, Sophy M.
8
2005
Numerical investigation of \(D\)-bifurcations for a stochastic delay logistic equation. Zbl 1073.60063
Ford, Neville J.; Norton, Stewart J.
3
2005
Detailed error analysis for a fractional Adams method. Zbl 1055.65098
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
340
2004
Multi-order fractional differential equations and their numerical solution. Zbl 1060.65070
Diethelm, Kai; Ford, Neville J.
112
2004
Bifurcations in approximate solutions of stochastic delay differential equations. Zbl 1080.34053
Baker, Christopher T. H.; Ford, Judith M.; Ford, Neville J.
5
2004
Simulation of grain-boundary diffusion creep: analysis of some new numerical techniques. Zbl 1321.74018
Ford, J. M.; Ford, N. J.; Wheeler, J.
2
2004
Bifurcations in numerical methods for Volterra integro-differential equations. Zbl 1064.65154
Edwards, John T.; Ford, Neville J.; Roberts, Jason A.
3
2003
Flexible parallelization of fast wavelet transforms. Zbl 1054.65132
Ford, Judith M.; Chen, Ke; Ford, Neville J.
1
2003
A predictor-corrector approach for the numerical solution of fractional differential equations. Zbl 1009.65049
Diethelm, Kai; Ford, Neville J.; Freed, Alan D.
673
2002
Analysis of fractional differential equations. Zbl 1014.34003
Diethelm, Kai; Ford, Neville J.
547
2002
Numerical solution of the Bagley-Torvik equation. Zbl 1035.65067
Diethelm, K.; Ford, N. J.
108
2002
The numerical solution of linear multi-term fractional differential equations: Systems of equations. Zbl 1019.65048
Edwards, John T.; Ford, Neville J.; Simpson, A. Charles
75
2002
Boundedness and stability of solutions to difference equations. Zbl 1002.39025
Edwards, John T.; Ford, Neville J.
4
2002
Characterising small solutions in delay differential equations through numerical approximations. Zbl 1030.34059
Ford, Neville J.; Verduyn Lunel, Sjoerd M.
3
2002
Numerical approaches to delay equations with small solutions. Zbl 1030.65080
Ford, Neville J.; Lumb, Patricia M.
3
2002
The numerical solution of fractional differential equations: speed versus accuracy. Zbl 0976.65062
Ford, Neville J.; Simpson, A. Charles
86
2001
Numerical solution methods for distributed order differential equations. Zbl 1032.65070
Diethelm, Kai; Ford, Neville J.
22
2001
Numerical modelling by delay and Volterra functional differential equations. Zbl 1094.65133
Baker, C. T. H.; Bocharov, G. A.; Filiz, A.; Ford, N. J.; Paul, C. A. H.; Rihan, F. A.; Tang, A.; Thomas, R. M.; Tian, H.; Willé, D. R.
1
2001
Numerical Hopf bifurcation for a class of delay differential equations. Zbl 0946.65065
Wulf, Volker; Ford, Neville J.
37
2000
How do numerical methods perform for delay differential equations undergoing a Hopf bifurcation? Zbl 0971.65068
Ford, Neville J.; Wulf, Volker
6
2000
Preserving transient behaviour in numerical solutions of Volterra integral equations of convolution type. Zbl 0965.65146
Ford, Neville J.; Baker, Christopher T. H.
2
2000
The use of boundary locus plots in the identification of bifurcation points in numerical approximation of delay differential equations. Zbl 0941.65132
Ford, Neville J.; Wulf, Volker
27
1999
Nonlinear Volterra integro-differential equations – stability and numerical stability of \(\theta\)-methods. Zbl 0944.65150
Ford, Neville J.; Baker, Christopher T. H.; Roberts, J. A.
5
1998
Insight into the qualitative behaviour of numerical solutions to some delay differential equations. Zbl 0944.65091
Wulf, Volker; Ford, Neville J.
3
1998
Volterra integral equations with non-Lipschitz nonlinearity. Zbl 0897.65088
Frischmuth, Kurt; Ford, Neville J.; Edwards, John T.
7
1997
Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. Zbl 0858.65137
Ford, Neville J.; Baker, Christopher T. H.
13
1996
Introducing formal methods: a less mathematical approach. Zbl 0850.68232
Ford, Neville; Ford, Judith
2
1993
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0794.65096
Baker, Christopher T. H.; Ford, Neville J.
1
1993
Stability properties of a scheme for the approximate solution of a delay- integro-differential equation. Zbl 0754.65111
Baker, Christopher T. H.; Ford, Neville J.
28
1992
Some applications of the boundary-locus method and the method of D- partitions. Zbl 0726.65152
Baker, Christopher T. H.; Ford, Neville J.
10
1991
Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Zbl 0746.65097
Baker, Christopher T. H.; Ford, Neville J.
6
1990
Convergence of linear multistep methods for a class of delay-integro- differential equations. Zbl 0656.65117
Baker, Christopher T. H.; Ford, Neville J.
2
1988
all top 5

Cited by 2,845 Authors

64 Băleanu, Dumitru I.
48 Ford, Neville J.
34 Dehghan Takht Fooladi, Mehdi
30 Li, Changpin
30 Liu, Fawang
29 Gómez-Aguilar, José Francisco
26 Yan, Yubin
25 Daftardar-Gejji, Varsha
24 Momani, Shaher M.
23 Abbaszadeh, Mostafa
21 Benchohra, Mouffak
21 Turner, Ian William
20 Ahmad, Bashir
20 Garrappa, Roberto
19 Zeng, Fanhai
18 Deng, Weihua
18 Wang, Hong
17 Bhalekar, Sachin
17 Li, Hong
17 Liu, Yang
16 Danca, Marius-Florin
16 Nieto Roig, Juan Jose
16 Zheng, Xiangcheng
15 Karniadakis, George Em
15 Machado, José António Tenreiro
15 Ntouyas, Sotiris K.
14 Atangana, Abdon
14 Chen, Yangquan
14 Diethelm, Kai
14 Javidi, Mohammad
13 Agarwal, Ravi P.
12 Abbas, Said
12 Baker, Christopher Thomas Hale
12 Bhrawy, Ali Hassan
12 Pedas, Arvet
12 Zhang, Chengjian
11 Jiang, Xiaoyun
11 Kumar, Sachin
11 Lima, Pedro Miguel
11 Tamme, Enn
11 Tavazoei, Mohammad Saleh
11 Zaky, Mahmoud A.
10 Al-saedi, Ahmed Eid Salem
10 Huang, Chengming
10 Mohebbi, Akbar
10 Odibat, Zaid M.
10 Owolabi, Kolade Matthew
10 Salahshour, Soheil
10 Sun, Zhizhong
10 Torres, Delfim Fernando Marado
10 Yu, Yongguang
9 Burrage, Kevin
9 Cao, Jinde
9 Haeri, Mohammad
9 Jin, Bangti
9 Popolizio, Marina
9 Rebelo, Magda S.
9 Saadatmandi, Abbas
9 Trujillo, Juan J.
9 Yin, Baoli
9 Zayernouri, Mohsen
9 Zhao, Jingjun
9 Zhou, Zhi
8 Abbasbandy, Saeid
8 Atanackovic, Teodor M.
8 Ding, Xiaohua
8 Doungmo Goufo, Emile Franc
8 El-Sayed, Ahmed Mohamed Ahmed
8 Ghanbari, Behzad
8 Lumb, Patricia M.
8 Shah, Kamal
8 Sun, Hongguang
8 Wei, LeiLei
8 Wu, Guocheng
8 Xu, Chuanju
8 Xu, Yang
7 Aghababa, Mohammad Pourmahmood
7 Ahmadian, Ali
7 Anh, Vo V.
7 Cafagna, Donato
7 Escobar-Jiménez, Ricardo Fabricio
7 Gao, Guanghua
7 Grassi, Giuseppe
7 Hashim, Ishak
7 Jia, Jinhong
7 Kheiri, Hossein
7 Kumar, Sunil
7 Liu, Chongxin
7 Liu, Xiao Jun
7 Lu, Shujuan
7 Ordokhani, Yadollah
7 Pham, Viet-Thanh
7 Saha Ray, Santanu
7 Wang, Zhen
7 Wu, Xiangjun
7 Xu, Wei
7 Yang, Lixin
7 Yüzbaşı, Şuayip
7 Zeng, Caibin
7 Zhang, Chunrui
...and 2,745 more Authors
all top 5

Cited in 281 Serials

117 Chaos, Solitons and Fractals
116 Journal of Computational and Applied Mathematics
100 Applied Mathematics and Computation
97 Computers & Mathematics with Applications
96 Nonlinear Dynamics
88 Fractional Calculus & Applied Analysis
88 Advances in Difference Equations
79 Applied Numerical Mathematics
63 Communications in Nonlinear Science and Numerical Simulation
54 Abstract and Applied Analysis
48 Journal of Scientific Computing
44 Journal of Computational Physics
43 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
39 Numerical Algorithms
37 Applied Mathematical Modelling
37 Mathematical Problems in Engineering
31 International Journal of Computer Mathematics
31 Computational and Applied Mathematics
30 Mathematics and Computers in Simulation
26 Discrete Dynamics in Nature and Society
22 Journal of Mathematical Analysis and Applications
20 Nonlinear Analysis. Theory, Methods & Applications. Series A: Theory and Methods
20 Applied Mathematics Letters
19 SIAM Journal on Scientific Computing
19 Chaos
18 Journal of Applied Mathematics and Computing
17 Fractals
17 International Journal of Applied and Computational Mathematics
17 AIMS Mathematics
15 Complexity
15 Advances in Mathematical Physics
14 SIAM Journal on Numerical Analysis
13 Computer Methods in Applied Mechanics and Engineering
13 Mathematical Methods in the Applied Sciences
13 International Journal of Nonlinear Sciences and Numerical Simulation
13 International Journal of Biomathematics
12 Journal of the Franklin Institute
12 Physica A
12 Mediterranean Journal of Mathematics
11 Journal of Vibration and Control
11 Fractional Differential Calculus
10 International Journal of Differential Equations
10 Mathematics
9 Journal of Integral Equations and Applications
9 Discrete and Continuous Dynamical Systems. Series B
9 Computational Methods in Applied Mathematics
8 Signal Processing
8 Advances in Computational Mathematics
8 Differential Equations and Dynamical Systems
8 Journal of Applied Mathematics
8 Mathematical Modelling of Natural Phenomena
8 Advances in Applied Mathematics and Mechanics
7 Journal of Optimization Theory and Applications
7 Numerical Functional Analysis and Optimization
7 Engineering Analysis with Boundary Elements
7 Nonlinear Analysis. Modelling and Control
7 Boundary Value Problems
7 Journal of Nonlinear Science and Applications
7 Journal of Mathematics
7 East Asian Journal on Applied Mathematics
6 BIT
6 Calcolo
6 Discrete and Continuous Dynamical Systems. Series S
6 Asian Journal of Control
6 S\(\vec{\text{e}}\)MA Journal
6 Journal of Function Spaces
6 Computational Methods for Differential Equations
6 Open Mathematics
6 Communications on Applied Mathematics and Computation
5 Physica D
5 Computational Mechanics
5 Mathematical and Computer Modelling
5 Journal of Difference Equations and Applications
5 Nonlinear Analysis. Hybrid Systems
5 Advances in Differential Equations and Control Processes
5 Journal of Applied Analysis and Computation
5 Mathematical Sciences
4 Acta Mechanica
4 Automatica
4 Numerical Methods for Partial Differential Equations
4 Journal of the Egyptian Mathematical Society
4 Filomat
4 Journal of Inverse and Ill-Posed Problems
4 Bulletin of the Malaysian Mathematical Sciences Society. Second Series
4 Frontiers of Mathematics in China
4 AMM. Applied Mathematics and Mechanics. (English Edition)
3 International Journal of Modern Physics B
3 International Journal of Control
3 Reports on Mathematical Physics
3 Mathematics of Computation
3 Numerische Mathematik
3 Results in Mathematics
3 Applied Mathematics and Mechanics. (English Edition)
3 Neural Networks
3 Taiwanese Journal of Mathematics
3 Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences
3 International Journal of Theoretical and Applied Finance
3 The ANZIAM Journal
3 Nonlinear Analysis. Real World Applications
3 Boletim da Sociedade Paranaense de Matemática. Terceira Série
...and 181 more Serials
all top 5

Cited in 43 Fields

1,150 Ordinary differential equations (34-XX)
1,096 Numerical analysis (65-XX)
554 Partial differential equations (35-XX)
548 Real functions (26-XX)
260 Integral equations (45-XX)
202 Biology and other natural sciences (92-XX)
184 Systems theory; control (93-XX)
175 Dynamical systems and ergodic theory (37-XX)
101 Operator theory (47-XX)
66 Special functions (33-XX)
55 Probability theory and stochastic processes (60-XX)
54 Fluid mechanics (76-XX)
45 Mechanics of deformable solids (74-XX)
43 Difference and functional equations (39-XX)
42 Approximations and expansions (41-XX)
40 Game theory, economics, finance, and other social and behavioral sciences (91-XX)
38 Calculus of variations and optimal control; optimization (49-XX)
36 Information and communication theory, circuits (94-XX)
31 Integral transforms, operational calculus (44-XX)
31 Statistical mechanics, structure of matter (82-XX)
29 Mechanics of particles and systems (70-XX)
21 Computer science (68-XX)
19 Operations research, mathematical programming (90-XX)
17 Harmonic analysis on Euclidean spaces (42-XX)
12 Optics, electromagnetic theory (78-XX)
10 Linear and multilinear algebra; matrix theory (15-XX)
9 Functions of a complex variable (30-XX)
9 Quantum theory (81-XX)
8 Functional analysis (46-XX)
8 Geophysics (86-XX)
7 Classical thermodynamics, heat transfer (80-XX)
6 Measure and integration (28-XX)
4 General and overarching topics; collections (00-XX)
4 Global analysis, analysis on manifolds (58-XX)
4 Statistics (62-XX)
3 Sequences, series, summability (40-XX)
2 Combinatorics (05-XX)
2 Mathematics education (97-XX)
1 Number theory (11-XX)
1 Potential theory (31-XX)
1 Several complex variables and analytic spaces (32-XX)
1 General topology (54-XX)
1 Relativity and gravitational theory (83-XX)

Citations by Year