×

zbMATH — the first resource for mathematics

Grebenev, Vladimir N.

Compute Distance To:
Author ID: grebenev.vladimir-n Recent zbMATH articles by "Grebenev, Vladimir N."
Published as: Grebenev, V. N.; Grebenev, Vladimir N.; Grebenëv, V. N.; Grebenev, V.
Documents Indexed: 51 Publications since 1983
Reviewing Activity: 1,064 Reviews

Publications by Year

Citations contained in zbMATH Open

22 Publications have been cited 53 times in 33 Documents Cited by Year
Self-similar solution in the Leith model of turbulence: anomalous power law and asymptotic analysis. Zbl 1304.35546
Grebenev, V. N.; Nazarenko, S. V.; Medvedev, S. B.; Schwab, I. V.; Chirkunov, Yu A.
6
2014
Invariant solutions for the nonlinear diffusion model of turbulence. Zbl 1426.76678
Chirkunov, Yu A.; Nazarenko, S. V.; Medvedev, S. B.; Grebenev, V. N.
6
2014
Geometric realization of the two-point velocity correlation tensor for isotropic turbulence. Zbl 1213.53024
Grebenev, Vladimir N.; Oberlack, Martin
5
2011
Approximate Lie symmetries of the Navier-Stokes equation. Zbl 1157.76038
Grebenev, V. N.; Oberlack, M.
4
2007
A Chorin-type formula for solutions to a closure model for the von Kármán-Howarth equation. Zbl 1067.35072
Grebenev, V. N.; Oberlack, M.
4
2005
A geometric interpretation of the second-order structure function arising in turbulence. Zbl 1169.76027
Grebenev, Vladimir N.; Oberlack, Martin
4
2009
A geometry of the correlation space and a nonlocal degenerate parabolic equation from isotropic turbulence. Zbl 1387.76035
Grebenev, V. N.; Oberlack, M.
4
2012
Self-similar evolution of alfven wave turbulence. Zbl 1464.76210
Bell, N. K.; Grebenev, V. N.; Medvedev, S. B.; Nazarenko, S. V.
3
2017
Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence. Zbl 1381.76096
Nazarenko, S. V.; Grebenev, V. N.
2
2017
On a certain system of degenerate parabolic equations which arises in hydrodynamics. Zbl 0861.35079
Grebenëv, V. N.
2
1994
Infinite dimensional Lie algebra associated with conformal transformations of the two-point velocity correlation tensor from isotropic turbulence. Zbl 1350.76024
Grebenev, V. N.; Oberlack, M.; Grishkov, A. N.
2
2013
Lie algebra methods for the applications to the statistical theory of turbulence. Zbl 1161.76023
Grebenev, V. N.; Oberlack, M.; Grishkov, A. N.
1
2008
The dual stream function representation of an ideal steady fluid flow and its local geometric structure. Zbl 1302.76073
Frewer, M.; Oberlack, M.; Grebenev, V. N.
1
2014
Invariant sets and explicit solutions to a third-order model for the shearless stratified turbulent flow. Zbl 1034.35111
Grebenev, V. N.; Ilyushin, B. B.
1
2002
Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence. Zbl 1465.76045
Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.
1
2017
Interfacial phenomenon for one-dimensional equation of forward-backward parabolic type. Zbl 0874.35060
Grebenev, Vladimir N.
1
1996
The use of differential constraints for analyzing turbulence models. Zbl 1010.76044
Grebenev, V. N.; Ilyushin, B. B.; Shokin, Yu. I.
1
2000
The extended symmetry Lie algebra and the asymptotic expansion of the transversal correlation function for the isotropic turbulence. Zbl 1350.76023
Grebenev, V. N.; Grishkov, A. N.; Oberlack, M.
1
2013
Hamiltonian structure for two-dimensional linear equations of elasticity theory. Zbl 1348.74032
Grebenev, Vladimir N.; Medvedev, Sergeĭ B.
1
2015
Steady states in Leith’s model of turbulence. Zbl 1349.76091
Grebenev, V. N.; Griffin, A.; Medvedev, S. B.; Nazarenko, S. V.
1
2016
Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow. Zbl 1364.76065
Wacławczyk, M.; Grebenev, V. N.; Oberlack, M.
1
2017
Explicit series solution of a closure model for the von Kármán-Howarth equation. Zbl 1235.34065
Liu, Zeng; Oberlack, Martin; Grebenev, Vladimir N.; Liao, Shi-Jun
1
2010
Self-similar evolution of alfven wave turbulence. Zbl 1464.76210
Bell, N. K.; Grebenev, V. N.; Medvedev, S. B.; Nazarenko, S. V.
3
2017
Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence. Zbl 1381.76096
Nazarenko, S. V.; Grebenev, V. N.
2
2017
Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence. Zbl 1465.76045
Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.
1
2017
Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow. Zbl 1364.76065
Wacławczyk, M.; Grebenev, V. N.; Oberlack, M.
1
2017
Steady states in Leith’s model of turbulence. Zbl 1349.76091
Grebenev, V. N.; Griffin, A.; Medvedev, S. B.; Nazarenko, S. V.
1
2016
Hamiltonian structure for two-dimensional linear equations of elasticity theory. Zbl 1348.74032
Grebenev, Vladimir N.; Medvedev, Sergeĭ B.
1
2015
Self-similar solution in the Leith model of turbulence: anomalous power law and asymptotic analysis. Zbl 1304.35546
Grebenev, V. N.; Nazarenko, S. V.; Medvedev, S. B.; Schwab, I. V.; Chirkunov, Yu A.
6
2014
Invariant solutions for the nonlinear diffusion model of turbulence. Zbl 1426.76678
Chirkunov, Yu A.; Nazarenko, S. V.; Medvedev, S. B.; Grebenev, V. N.
6
2014
The dual stream function representation of an ideal steady fluid flow and its local geometric structure. Zbl 1302.76073
Frewer, M.; Oberlack, M.; Grebenev, V. N.
1
2014
Infinite dimensional Lie algebra associated with conformal transformations of the two-point velocity correlation tensor from isotropic turbulence. Zbl 1350.76024
Grebenev, V. N.; Oberlack, M.; Grishkov, A. N.
2
2013
The extended symmetry Lie algebra and the asymptotic expansion of the transversal correlation function for the isotropic turbulence. Zbl 1350.76023
Grebenev, V. N.; Grishkov, A. N.; Oberlack, M.
1
2013
A geometry of the correlation space and a nonlocal degenerate parabolic equation from isotropic turbulence. Zbl 1387.76035
Grebenev, V. N.; Oberlack, M.
4
2012
Geometric realization of the two-point velocity correlation tensor for isotropic turbulence. Zbl 1213.53024
Grebenev, Vladimir N.; Oberlack, Martin
5
2011
Explicit series solution of a closure model for the von Kármán-Howarth equation. Zbl 1235.34065
Liu, Zeng; Oberlack, Martin; Grebenev, Vladimir N.; Liao, Shi-Jun
1
2010
A geometric interpretation of the second-order structure function arising in turbulence. Zbl 1169.76027
Grebenev, Vladimir N.; Oberlack, Martin
4
2009
Lie algebra methods for the applications to the statistical theory of turbulence. Zbl 1161.76023
Grebenev, V. N.; Oberlack, M.; Grishkov, A. N.
1
2008
Approximate Lie symmetries of the Navier-Stokes equation. Zbl 1157.76038
Grebenev, V. N.; Oberlack, M.
4
2007
A Chorin-type formula for solutions to a closure model for the von Kármán-Howarth equation. Zbl 1067.35072
Grebenev, V. N.; Oberlack, M.
4
2005
Invariant sets and explicit solutions to a third-order model for the shearless stratified turbulent flow. Zbl 1034.35111
Grebenev, V. N.; Ilyushin, B. B.
1
2002
The use of differential constraints for analyzing turbulence models. Zbl 1010.76044
Grebenev, V. N.; Ilyushin, B. B.; Shokin, Yu. I.
1
2000
Interfacial phenomenon for one-dimensional equation of forward-backward parabolic type. Zbl 0874.35060
Grebenev, Vladimir N.
1
1996
On a certain system of degenerate parabolic equations which arises in hydrodynamics. Zbl 0861.35079
Grebenëv, V. N.
2
1994

Citations by Year