×
Compute Distance To:
Author ID: herbst.barend-m Recent zbMATH articles by "Herbst, Barend M."
Published as: Herbst, Barend M.

Publications by Year

Citations contained in zbMATH Open

36 Publications have been cited 16 times in 16 Documents Cited by Year
On the extension of the Painlevé property to difference equations. Zbl 0956.39003
Ablowitz, M. J.; Halburd, R.; Herbst, B.
108
2000
Split-step methods for the solution of the nonlinear Schrödinger equation. Zbl 0597.76012
Weideman, J. A. C.; Herbst, B. M.
107
1986
On the numerical solution of the sine-Gordon equation. I: Integrable discretizations and homoclinic manifolds. Zbl 0866.65064
Ablowitz, M. J.; Herbst, B. M.; Schober, Constance
69
1996
On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. Zbl 0707.35141
Ablowitz, Mark J.; Herbst, B. M.
56
1990
Accuracy estimates and adaptive refinements in finite element computations. Lectures presented at the international conference held in Lisbon, June 1984. Zbl 0663.65001
44
1986
On the numerical solution of the sine-Gordon equation. II: Performance of numerical schemes. Zbl 0874.65076
Ablowitz, M. J.; Herbst, B. M.; Schober, C. M.
28
1997
Numerical experience with the nonlinear Schrödinger equation. Zbl 0589.65084
Herbst, B. M.; Morris, J. Ll.; Mitchell, A. R.
26
1985
A moving Petrov-Galerkin method for transport equations. Zbl 0485.65093
Herbst, B. M.; Schoombie, S. W.; Mitchell, A. R.
25
1982
Numerical homoclinic instabilities and the complex modified Korteweg-de Vries equation. Zbl 0900.65350
Herbst, B. M.; Ablowitz, Mark J.; Ryan, E.
25
1991
Direct methods and symbolic software for conservation laws of nonlinear equations. Zbl 1210.35164
Hereman, Willy; Adams, Paul J.; Eklund, Holly L.; Hickman, Mark S.; Herbst, Barend M.
16
2009
Numerical simulation of quasi-periodic solutions of the sine-Gordon equation. Zbl 1194.65121
Ablowitz, Mark J.; Herbst, B. M.; Schober, Constance M.
15
1995
Singular value decomposition, eigenfaces, and 3D reconstructions. Zbl 1061.65033
Muller, Neil; Magaia, Lourenço; Herbst, B. M.
13
2004
Numerical homoclinic instabilities in the sine-Gordon equation. Zbl 0785.65086
Herbst, B. M.; Ablowitz, M. J.
11
1992
Symplectic methods for the nonlinear Schrödinger equation. Zbl 0812.65118
Herbst, B. M.; Varadi, F.; Ablowitz, M. J.
10
1994
Generalized Petrov-Galerkin methods for the numerical solution of Burgers’ equation. Zbl 0546.65078
Herbst, B. M.; Schoombie, S. W.; Griffiths, D. F.; Mitchell, A. R.
9
1984
A numerical study of the nonlinear Schrödinger equation involving quintic terms. Zbl 0685.65110
Cloot, A.; Herbst, B. M.; Weideman, J. A. C.
8
1990
Discretizations, integrable systems and computation. Zbl 0991.65137
Ablowitz, M. J.; Herbst, B. M.; Schober, C. M.
8
2001
Dubuc–Deslauriers subdivision for finite sequences and interpolation wavelets on an interval. Zbl 1047.65121
de Villiers, J. M.; Goosen, K. M.; Herbst, B. M.
8
2003
On the stability of the nonlinear Schrödinger equation. Zbl 0589.65083
Herbst, B. M.; Mitchell, A. R.; Weideman, J. A. C.
7
1985
Equidistributing principles in moving finite element methods. Zbl 0532.65074
Herbst, B. M.; Schoombie, S. W.; Mitchell, A. R.
6
1983
On the numerical solution of the cubic Schrödinger equation in one space variable. Zbl 0766.65112
Robinson, M. P.; Fairweather, G.; Herbst, B. M.
6
1993
Numerical chaos, symplectic integrators, and exponentially small splitting distances. Zbl 0772.65084
Herbst, B. M.; Ablowitz, Mark J.
6
1993
Recurrence in semidiscrete approximations of the nonlinear Schrödinger equation. Zbl 0646.65088
Weideman, J. A. C.; Herbst, B. M.
5
1987
On numerical chaos in the nonlinear Schrödinger equation. Zbl 0711.35131
Herbst, B. M.; Ablowitz, Mark J.
4
1989
Dynamics of semi-discretizations of the defocusing nonlinear Schrödinger equation. Zbl 0737.65088
Ablowitz, M. J.; Herbst, B. M.; Weideman, J. A. C.
4
1991
The nonlinear Schrödinger equation: Asymmetric perturbations, traveling waves and chaotic structures. Zbl 0869.68125
Ablowitz, M. J.; Herbst, B. M.; Schober, C. M.
4
1997
Analytical instability of the Klein-Gordon equation. Zbl 0634.76047
Cloot, A. H. J.; Herbst, B. M.
3
1988
On homoclinic boundaries in the nonlinear Schrödinger equation. Zbl 0736.35105
Ablowitz, Mark J.; Herbst, B. M.
2
1990
Nonlinear evolution equations, solitons, chaos and cellular automata. Zbl 0728.35102
Ablowitz, M. J.; Herbst, B. M.; Keiser, J. M.
2
1990
On the numerics of integrable discretizations. Zbl 0856.65107
Ablowitz, M. J.; Herbst, B. M.; Schober, C.
2
1996
Integrability, computation and applications. Zbl 0832.58019
Ablowitz, M. J.; Chakravarty, S.; Herbst, B. M.
2
1995
A model for the propagation of rounding error in a Klein-Gordon equation. Zbl 0683.65105
Cloot, A.; Herbst, B. M.
1
1989
Numerical evidence of exponentially small splitting distances in symplectic discretizations of planar Hamiltonian systems. Zbl 0941.37504
Herbst, B. M.
1
1992
A note on an integrable discretization of the nonlinear Schrödinger equation. Zbl 0940.35184
Black, W.; Weideman, J. A. C.; Herbst, B. M.
1
1999
Finite difference methods for an AKNS eigenproblem. Zbl 0870.65069
Weideman, J. A. C.; Herbst, B. M.
1
1997
A numerical study of the large-period limit of a Zakharov-Shabat eigenvalue problem with periodic potentials. Zbl 1258.37068
Olivier, C. P.; Herbst, B. M.; Molchan, M. A.
1
2012
A numerical study of the large-period limit of a Zakharov-Shabat eigenvalue problem with periodic potentials. Zbl 1258.37068
Olivier, C. P.; Herbst, B. M.; Molchan, M. A.
1
2012
Direct methods and symbolic software for conservation laws of nonlinear equations. Zbl 1210.35164
Hereman, Willy; Adams, Paul J.; Eklund, Holly L.; Hickman, Mark S.; Herbst, Barend M.
16
2009
Singular value decomposition, eigenfaces, and 3D reconstructions. Zbl 1061.65033
Muller, Neil; Magaia, Lourenço; Herbst, B. M.
13
2004
Dubuc–Deslauriers subdivision for finite sequences and interpolation wavelets on an interval. Zbl 1047.65121
de Villiers, J. M.; Goosen, K. M.; Herbst, B. M.
8
2003
Discretizations, integrable systems and computation. Zbl 0991.65137
Ablowitz, M. J.; Herbst, B. M.; Schober, C. M.
8
2001
On the extension of the Painlevé property to difference equations. Zbl 0956.39003
Ablowitz, M. J.; Halburd, R.; Herbst, B.
108
2000
A note on an integrable discretization of the nonlinear Schrödinger equation. Zbl 0940.35184
Black, W.; Weideman, J. A. C.; Herbst, B. M.
1
1999
On the numerical solution of the sine-Gordon equation. II: Performance of numerical schemes. Zbl 0874.65076
Ablowitz, M. J.; Herbst, B. M.; Schober, C. M.
28
1997
The nonlinear Schrödinger equation: Asymmetric perturbations, traveling waves and chaotic structures. Zbl 0869.68125
Ablowitz, M. J.; Herbst, B. M.; Schober, C. M.
4
1997
Finite difference methods for an AKNS eigenproblem. Zbl 0870.65069
Weideman, J. A. C.; Herbst, B. M.
1
1997
On the numerical solution of the sine-Gordon equation. I: Integrable discretizations and homoclinic manifolds. Zbl 0866.65064
Ablowitz, M. J.; Herbst, B. M.; Schober, Constance
69
1996
On the numerics of integrable discretizations. Zbl 0856.65107
Ablowitz, M. J.; Herbst, B. M.; Schober, C.
2
1996
Numerical simulation of quasi-periodic solutions of the sine-Gordon equation. Zbl 1194.65121
Ablowitz, Mark J.; Herbst, B. M.; Schober, Constance M.
15
1995
Integrability, computation and applications. Zbl 0832.58019
Ablowitz, M. J.; Chakravarty, S.; Herbst, B. M.
2
1995
Symplectic methods for the nonlinear Schrödinger equation. Zbl 0812.65118
Herbst, B. M.; Varadi, F.; Ablowitz, M. J.
10
1994
On the numerical solution of the cubic Schrödinger equation in one space variable. Zbl 0766.65112
Robinson, M. P.; Fairweather, G.; Herbst, B. M.
6
1993
Numerical chaos, symplectic integrators, and exponentially small splitting distances. Zbl 0772.65084
Herbst, B. M.; Ablowitz, Mark J.
6
1993
Numerical homoclinic instabilities in the sine-Gordon equation. Zbl 0785.65086
Herbst, B. M.; Ablowitz, M. J.
11
1992
Numerical evidence of exponentially small splitting distances in symplectic discretizations of planar Hamiltonian systems. Zbl 0941.37504
Herbst, B. M.
1
1992
Numerical homoclinic instabilities and the complex modified Korteweg-de Vries equation. Zbl 0900.65350
Herbst, B. M.; Ablowitz, Mark J.; Ryan, E.
25
1991
Dynamics of semi-discretizations of the defocusing nonlinear Schrödinger equation. Zbl 0737.65088
Ablowitz, M. J.; Herbst, B. M.; Weideman, J. A. C.
4
1991
On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. Zbl 0707.35141
Ablowitz, Mark J.; Herbst, B. M.
56
1990
A numerical study of the nonlinear Schrödinger equation involving quintic terms. Zbl 0685.65110
Cloot, A.; Herbst, B. M.; Weideman, J. A. C.
8
1990
On homoclinic boundaries in the nonlinear Schrödinger equation. Zbl 0736.35105
Ablowitz, Mark J.; Herbst, B. M.
2
1990
Nonlinear evolution equations, solitons, chaos and cellular automata. Zbl 0728.35102
Ablowitz, M. J.; Herbst, B. M.; Keiser, J. M.
2
1990
On numerical chaos in the nonlinear Schrödinger equation. Zbl 0711.35131
Herbst, B. M.; Ablowitz, Mark J.
4
1989
A model for the propagation of rounding error in a Klein-Gordon equation. Zbl 0683.65105
Cloot, A.; Herbst, B. M.
1
1989
Analytical instability of the Klein-Gordon equation. Zbl 0634.76047
Cloot, A. H. J.; Herbst, B. M.
3
1988
Recurrence in semidiscrete approximations of the nonlinear Schrödinger equation. Zbl 0646.65088
Weideman, J. A. C.; Herbst, B. M.
5
1987
Split-step methods for the solution of the nonlinear Schrödinger equation. Zbl 0597.76012
Weideman, J. A. C.; Herbst, B. M.
107
1986
Accuracy estimates and adaptive refinements in finite element computations. Lectures presented at the international conference held in Lisbon, June 1984. Zbl 0663.65001
44
1986
Numerical experience with the nonlinear Schrödinger equation. Zbl 0589.65084
Herbst, B. M.; Morris, J. Ll.; Mitchell, A. R.
26
1985
On the stability of the nonlinear Schrödinger equation. Zbl 0589.65083
Herbst, B. M.; Mitchell, A. R.; Weideman, J. A. C.
7
1985
Generalized Petrov-Galerkin methods for the numerical solution of Burgers’ equation. Zbl 0546.65078
Herbst, B. M.; Schoombie, S. W.; Griffiths, D. F.; Mitchell, A. R.
9
1984
Equidistributing principles in moving finite element methods. Zbl 0532.65074
Herbst, B. M.; Schoombie, S. W.; Mitchell, A. R.
6
1983
A moving Petrov-Galerkin method for transport equations. Zbl 0485.65093
Herbst, B. M.; Schoombie, S. W.; Mitchell, A. R.
25
1982

Citations by Year