×

Nayar, Bhamini M. P.

Author ID: nayar.bhamini-m-p Recent zbMATH articles by "Nayar, Bhamini M. P."
Published as: Nayar, Bhamini M. P.; Bhamini, M. P.; Nayar, B. M. P.
Homepage: http://grizzly.morgan.edu/~mathdept/F_Nayar.htm
Documents Indexed: 41 Publications since 1982, including 1 Book
Co-Authors: 6 Co-Authors with 31 Joint Publications
28 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

13 Publications have been cited 24 times in 17 Documents Cited by Year
Some generalizations of pairwise Urysohn spaces. Zbl 0627.54014
Arya, S. P.; Bhamini, M. P.
6
1987
Some weaker forms of semi-continuous functions. Zbl 0586.54017
Arya, S. P.; Bhamini, M. P.
5
1982
A generalisation of normal spaces. Zbl 0527.54018
Arya, S. P.; Bhamini, M. P.
3
1983
Semi-topological properties. Zbl 0765.54002
Nayar, Bhamini M. P.; Arya, S. P.
1
1992
New proofs of theorems of Michael and Worrell. Zbl 1362.54022
Joseph, James E.; Nayar, Bhamini M. P.
1
2017
Pairwise \(s\)-normal spaces. Zbl 0797.54041
Nayar, Bhamini M. P.; Arya, S. P.
1
1992
A characterization of paracompactness in terms of filterbases. Zbl 1076.54520
Nayar, Bhamini M. P.
1
2003
Weak continuity forms, graph conditions, and applications. Zbl 0970.54014
Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
1999
On some sub-classes of the class of semi-continuous functions. Zbl 0518.54013
Arya, S. P.; Bhamini, M. P.
1
1982
A Hausdorff (Urysohn) [regular] space in which closed sets are Hausdorff-closed (Urysohn-closed) [regular-closed] is compact. Zbl 1338.54131
Joseph, James E.; Nayar, Bhamini M. P.
1
2014
Compact spaces via \(p\)-closed subsets. Zbl 1338.54129
Edwards, Terrence A.; Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
2014
Compactness via \(\theta\)-closed and \(\theta\)-rigid subsets. Zbl 1338.54130
Edwards, Terrence A.; Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
2014
Compactness via adherence dominators. Zbl 1338.54115
Edwards, Terrence A.; Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
2014
New proofs of theorems of Michael and Worrell. Zbl 1362.54022
Joseph, James E.; Nayar, Bhamini M. P.
1
2017
A Hausdorff (Urysohn) [regular] space in which closed sets are Hausdorff-closed (Urysohn-closed) [regular-closed] is compact. Zbl 1338.54131
Joseph, James E.; Nayar, Bhamini M. P.
1
2014
Compact spaces via \(p\)-closed subsets. Zbl 1338.54129
Edwards, Terrence A.; Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
2014
Compactness via \(\theta\)-closed and \(\theta\)-rigid subsets. Zbl 1338.54130
Edwards, Terrence A.; Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
2014
Compactness via adherence dominators. Zbl 1338.54115
Edwards, Terrence A.; Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
2014
A characterization of paracompactness in terms of filterbases. Zbl 1076.54520
Nayar, Bhamini M. P.
1
2003
Weak continuity forms, graph conditions, and applications. Zbl 0970.54014
Joseph, James E.; Kwack, Myung H.; Nayar, Bhamini M. P.
1
1999
Semi-topological properties. Zbl 0765.54002
Nayar, Bhamini M. P.; Arya, S. P.
1
1992
Pairwise \(s\)-normal spaces. Zbl 0797.54041
Nayar, Bhamini M. P.; Arya, S. P.
1
1992
Some generalizations of pairwise Urysohn spaces. Zbl 0627.54014
Arya, S. P.; Bhamini, M. P.
6
1987
A generalisation of normal spaces. Zbl 0527.54018
Arya, S. P.; Bhamini, M. P.
3
1983
Some weaker forms of semi-continuous functions. Zbl 0586.54017
Arya, S. P.; Bhamini, M. P.
5
1982
On some sub-classes of the class of semi-continuous functions. Zbl 0518.54013
Arya, S. P.; Bhamini, M. P.
1
1982

Citations by Year