×

Scoville, Nicholas A.

Author ID: scoville.nicholas-a Recent zbMATH articles by "Scoville, Nicholas A."
Published as: Scoville, Nicholas A.; Scoville, Nicholas
External Links: MGP
Documents Indexed: 30 Publications since 2011, including 1 Book and 5 Additional arXiv Preprints
Reviewing Activity: 55 Reviews
Co-Authors: 32 Co-Authors with 25 Joint Publications
378 Co-Co-Authors

Publications by Year

Citations contained in zbMATH Open

19 Publications have been cited 65 times in 45 Documents Cited by Year
Discrete Morse theory. Zbl 1433.58002
Scoville, Nicholas A.
11
2019
Lusternik-Schnirelmann category for simplicial complexes. Zbl 1302.55004
Aaronson, Seth; Scoville, Nicholas A.
9
2013
A fundamental group for digital images. Zbl 1481.55008
Lupton, Gregory; Oprea, John; Scoville, Nicholas A.
7
2021
On the Lusternik-Schnirelmann category of a simplicial map. Zbl 1357.55001
Scoville, Nicholas A.; Swei, Willie
7
2017
Homotopy theory in digital topology. Zbl 1481.54060
Lupton, Gregory; Oprea, John; Scoville, Nicholas A.
7
2022
Knots related by knotoids. Zbl 1419.57009
Adams, Colin; Henrich, Allison; Kearney, Kate; Scoville, Nicholas
6
2019
On the automorphism group of the Morse complex. Zbl 1475.57038
Lin, Maxwell; Scoville, Nicholas A.
3
2021
Homologically equivalent discrete Morse functions. Zbl 1431.55015
Agiorgousis, Michael; Green, Brian; Onderdonk, Alex; Rich, Kim; Scoville, Nicholas A.
2
2019
Subdivision of maps of digital images. Zbl 1487.55018
Lupton, Gregory; Oprea, John; Scoville, Nicholas A.
2
2022
Lusternik-Schnirelmann category and the connectivity of \(X\). Zbl 1250.55001
Scoville, Nicholas A.
2
2012
Mapping cone sequences and a generalized notion of cone length. Zbl 1237.55002
Scoville, Nicholas A.
1
2011
The realization problem for discrete Morse functions on trees. Zbl 1460.57032
Liu, Yuqing; Scoville, Nicholas A.
1
2020
Discrete Morse functions, vector fields, and homological sequences on trees. Zbl 1435.05242
Rand, Ian; Scoville, Nicholas A.
1
2020
Merge trees in discrete Morse theory. Zbl 1501.57022
Johnson, Benjamin; Scoville, Nicholas A.
1
2022
The digital Hopf construction. Zbl 1514.55013
Lupton, Greg; Oprea, John; Scoville, Nicholas A.
1
2023
A persistent homological analysis of network data flow malfunctions. Zbl 1458.90195
Scoville, Nicholas A.; Yegnesh, Karthik
1
2017
Higher connectivity of the Morse complex. Zbl 1504.55015
Scoville, Nicholas A.; Zaremsky, Matthew C. B.
1
2022
On the homotopy and strong homotopy type of complexes of discrete Morse functions. Zbl 1517.57017
Donovan, Connor; Lin, Maxwell; Scoville, Nicholas A.
1
2023
Estimating the discrete geometric Lusternik-Schnirelmann category. Zbl 1372.55006
Green, Brian; Scoville, Nicholas A.; Tsuruga, Mimi
1
2015
The digital Hopf construction. Zbl 1514.55013
Lupton, Greg; Oprea, John; Scoville, Nicholas A.
1
2023
On the homotopy and strong homotopy type of complexes of discrete Morse functions. Zbl 1517.57017
Donovan, Connor; Lin, Maxwell; Scoville, Nicholas A.
1
2023
Homotopy theory in digital topology. Zbl 1481.54060
Lupton, Gregory; Oprea, John; Scoville, Nicholas A.
7
2022
Subdivision of maps of digital images. Zbl 1487.55018
Lupton, Gregory; Oprea, John; Scoville, Nicholas A.
2
2022
Merge trees in discrete Morse theory. Zbl 1501.57022
Johnson, Benjamin; Scoville, Nicholas A.
1
2022
Higher connectivity of the Morse complex. Zbl 1504.55015
Scoville, Nicholas A.; Zaremsky, Matthew C. B.
1
2022
A fundamental group for digital images. Zbl 1481.55008
Lupton, Gregory; Oprea, John; Scoville, Nicholas A.
7
2021
On the automorphism group of the Morse complex. Zbl 1475.57038
Lin, Maxwell; Scoville, Nicholas A.
3
2021
The realization problem for discrete Morse functions on trees. Zbl 1460.57032
Liu, Yuqing; Scoville, Nicholas A.
1
2020
Discrete Morse functions, vector fields, and homological sequences on trees. Zbl 1435.05242
Rand, Ian; Scoville, Nicholas A.
1
2020
Discrete Morse theory. Zbl 1433.58002
Scoville, Nicholas A.
11
2019
Knots related by knotoids. Zbl 1419.57009
Adams, Colin; Henrich, Allison; Kearney, Kate; Scoville, Nicholas
6
2019
Homologically equivalent discrete Morse functions. Zbl 1431.55015
Agiorgousis, Michael; Green, Brian; Onderdonk, Alex; Rich, Kim; Scoville, Nicholas A.
2
2019
On the Lusternik-Schnirelmann category of a simplicial map. Zbl 1357.55001
Scoville, Nicholas A.; Swei, Willie
7
2017
A persistent homological analysis of network data flow malfunctions. Zbl 1458.90195
Scoville, Nicholas A.; Yegnesh, Karthik
1
2017
Estimating the discrete geometric Lusternik-Schnirelmann category. Zbl 1372.55006
Green, Brian; Scoville, Nicholas A.; Tsuruga, Mimi
1
2015
Lusternik-Schnirelmann category for simplicial complexes. Zbl 1302.55004
Aaronson, Seth; Scoville, Nicholas A.
9
2013
Lusternik-Schnirelmann category and the connectivity of \(X\). Zbl 1250.55001
Scoville, Nicholas A.
2
2012
Mapping cone sequences and a generalized notion of cone length. Zbl 1237.55002
Scoville, Nicholas A.
1
2011

Citations by Year