Brauer, Richard

Author’s introduction: Consider a system of algebraic equations

\[\begin{align*}
 f_1(x_1, x_2, \ldots, x_n) &= 0, \\
 f_2(x_1, x_2, \ldots, x_n) &= 0, \\
 \vdots \\
 f_h(x_1, x_2, \ldots, x_n) &= 0,
\end{align*} \tag{1} \]

where \(f_i \) is a homogeneous polynomial of degree \(r_i \) with coefficients belonging to a given field \(K \). We interpret homogeneous coordinates in an \((n - 1)\)-dimensional projective space. When \(n > h \), the system (1) has non-trivial solutions \((x_1, x_2, \ldots, x_n)\) in an algebraically closed extension field of \(K \), but there may not exist any such solutions in \(K \) itself. It is, in general, extremely difficult to decide whether adjunction of irrationalities of a certain type to \(K \) is sufficient to guarantee the existence of non-trivial solutions of (1) in the extended field. However, the situation is much simpler, when \(n \) is very large, in the sense that \(n \) lies above a certain expression depending on the number of equations \(h \) and the degrees \(r_1, r_2, \ldots, r_h \).

We show:

Theorem A. For any system of \(h \) positive degrees \(r_1, r_2, \ldots, r_h \), there exists an integer \(\Phi(r_1, r_2, \ldots, r_h) \) such that for \(n \geq \Phi(r_1, r_2, \ldots, r_h) \) the system (1) has a non-trivial solution in a soluble extension field \(K_1 \) of \(K \). The field \(K_1 \) may be chosen such that its degree \(N_1 \) over \(K \) lies below a value depending on \(r_1, r_2, \ldots, r_h \) alone and that any prime factor of \(N_1 \) is at most equal to \(\max(r_1, r_2, \ldots, r_h) \).

This Theorem A is evidently contained in the following.

Theorem B. For any system of positive integers \(r_1, r_2, \ldots, r_h \) and any integer \(m \geq 0 \), there exists an integer \(\Phi(r_1, r_2, \ldots, r_h; m) \) with the following property. For \(n \geq \Phi(r_1, r_2, \ldots, r_h; m) \), there exists a soluble extension field \(K_2 \) of \(K \) such that all points \(x_1, x_2, \ldots, x_n \) of an \(m \)-dimensional linear manifold \(L \), defined in \(K_2 \), satisfy the equations (1). Here \(K_2 \) may be chosen so that its degree \(N_2 \) over \(K \) lies below a bound depending on \(r_1, r_2, \ldots, r_h \) and \(m \) and that no prime factor of \(N_2 \) exceeds \(\max(r_1, r_2, \ldots, r_h) \).

At the same time, we prove the theorem:

Theorem C. Assume that the field \(K \) has the following property,

(*) For every integer \(r > 0 \), there exists an integer \(\Psi(r) \) such that for \(n \geq \Psi(r) \) every equation

\[a_1x_1^r + a_2x_2^r + \cdots + a_nx_n^r = 0 \tag{2} \]

with coefficients \(a_i \in K \) has a non-trivial solution in \(K \).

Then, for every system of positive degrees \(r_1, r_2, \ldots, r_h \), and every integer \(m \geq 0 \), there exists an expression \(\Omega(r_1, r_2, \ldots, r_h; m) \) with the following property: For \(n \geq \Omega(r_1, r_2, \ldots, r_h; m) \), there exists an \(m \)-dimensional linear manifold \(M \), defined in \(K \), whose points satisfy the equations (1).

We prove Theorem C in §2. The changes necessary in order to obtain Theorem B are obvious. In §3, some applications are given. One of them is concerned with Hilbert’s resolvent problem. We prove here a recent conjecture of B. Segre [Ann. Math. (2) 46, 287–301 (1945; Zbl 0061.01807)].

MSC:

11D72 Diophantine equations in many variables

Cited in 6 Reviews
Cited in 26 Documents

Full Text: DOI