Thierrin, G.
Permutation automata. (English) Zbl 0157.33702

A permutation (p-)automaton is a Rabin-Scott one-way, one-tape automaton in which the mapping of the state set into itself induced by each input is a permutation. In Section 2 the author obtains several theorems giving various conditions on the congruence relation induced on the set of input strings which are necessary and sufficient for an automaton to be a p-automaton; typical conditions are that the relation be a right-cancellative right congruence, and that the semigroup of the machine be a group. These theorems are then applied in Section 3 to show that p-automata are strongly connected (in minimal form), and in Section 4 to show that the family of sets of strings accepted by p-automata is closed under Boolean operations, transposition, and pre- and post-fix deletion (quotient) by an arbitrary set. It would seem that the usual arguments, either in terms of the accepting machines or of their associated groups, give these results in a simpler and more perspicuous manner. The present treatment seems rather awkward, falling between a fully algebraic treatment and a direct intuitive treatment in terms of state diagrams. However, it may be that the detailed theorems of Section 2 have an independent interest.

Reviewer: J. D. Rutledge

For a scan of this review see the web version.

MSC:
68Q45 Formal languages and automata

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.