Rearick, David

Let \(A \) denote the set of all real-valued arithmetic functions \(f \), \(P \) the set of all \(f \in A \) such that \(f(1) \) is positive, and \(M \) the set of all real multiplicative \(f \). Let \(\ast \) denote the Dirichlet product and \(\times \) the unitary product. It is shown that the groups \(\{ P, \ast \} \), \(\{ M, \ast \} \), \(\{ P, X \} \), \(\{ M, X \} \) and \(\{ A, + \} \) are all isomorphic. The proofs are based on properties of a logarithm operator \(L : P \to A \) defined (in the Dirichlet case) by

\[
Lf(n) = \sum_{d \mid n} f(d) f^{-1}(n/d) \log d \quad \text{if } n > 1, \quad Lf(1) = \log f(1).
\]

It is shown that \(L \) possesses the logarithmic property \(L(f \ast g) = L(f) + L(g) \) and is a bijection of \(P \) onto \(A \). An analogous result holds in the unitary case. If \(f \in P \) and \(r \) is a real number, we define the \(r \)th power of \(f \) by \(f^r = E(rL_f) \), where \(E = L^{-1} \). It is shown that \(f \) is multiplicative if and only if \(LF(n) = 0 \) whenever \(n \) is not a prime power. It follows that \(f^r \) is multiplicative whenever \(f \) is. Trigonometric operators are constructed from \(E \) as in ordinary analysis, and their properties lead to further isomorphism theorems. Finally, an extension of these results to complex-valued arithmetic functions is indicated.

Reviewer: D. Rearick

For a scan of this review see the web version.

MSC:

11A25 Arithmetic functions; related numbers; inversion formulas

Keywords:

real-valued arithmetic functions; Dirichlet product; unitary product; isomorphism theorems; multiplicative groups; additive groups; logarithm operator; powers of arithmetic functions; multiplicative functions

Full Text: DOI