Hazewinkel, Michiel

For a commutative ring with unity A, let $\text{End} A$ be the category of all pairs (P,f), where P is finitely generated projective A-module and f an endomorphism of A. The K-group $K_0(A)$ is a direct summand and ideal of $K_0(\text{End} A)$, and Almkvist showed that the quotient ring $W_0(A) = K_0(\text{End} A)/K_0(A)$ is a functorial subring of the ring of the big Witt vectors $W(A)$. In this paper, I determine the ring of all continuous functorial operations on $W_0(\cdot)$, and the semiring of all operations (and all continuous operations) liftable to $\text{End} A$. This solves some of the open problems listed by G. Almkvist in J. Algebra 55, 308-340 (1978; Zbl 0414.18009). Let $\mathbb{Z}[X] = \mathbb{Z}[X_1, X_2, X_3, \ldots]$. Then the results involve the J-topology on $\mathbb{Z}[X]$ defined by the ideals J_n generated by all the $(n+1)\times(n+1)$ minors of the infinite matrix (a_{ij}) with $a_{ij} = X_{i+j-2}$ (define $X_0 = 1$). A key result is that the J_n are prime ideals.

MSC:
13D15 Grothendieck groups, K-theory and commutative rings
18F25 Algebraic K-theory and L-theory (category-theoretic aspects)
13K05 Witt vectors and related rings (MSC2000)
14M12 Determinantal varieties
93B25 Algebraic methods

Keywords:
K-theory of endomorphisms; determinantal varieties; ring of the big Witt vectors

Full Text: DOI

References:
[5] Liulevicius, A, Arrows, symmetries and functors, (1979), Univ. of Chicago, preprint
[7] Roschaleou, Y; Wyman, B.F; Kalman, R.E, Algebraic structure of linear dynamical systems, III: realization theory over a commutative ring, (\), 3404-3406 · Zbl 0264.34058
[9] Hazewinkel, M, On the (internal) symmetry groups of linear dynamical systems, (\), 362-404

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.