Among all curves γ in the closed unit disc that meet every radius, there is one, γ_0, whose harmonic measure c_0 at the origin is minimal. The authors give an explicit description of γ_0 and show that c_0 is equal to the harmonic measure at the center of a $1:3$ rectangle for the two long sides. They also give a quadratically convergent algorithm to compute the harmonic measure of one side (or two sides) of a rectangle. Extremal length and conformal mappings are used to determine the optimal curve γ_0.

Finally it is shown, that if the hypothesis that γ is connected is removed, the constant c_0 is no longer the lower bound for the harmonic measure at the origin.

Reviewer: J. Weisel

MSC:
- 30C85 Capacity and harmonic measure in the complex plane
- 31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
- 30C30 Schwarz-Christoffel-type mappings
- 30C70 Extremal problems for conformal and quasiconformal mappings, variational methods

Keywords:
- harmonic measure
- Extremal length

Full Text: DOI

References:
[10] B. J. Maitland, A note on functions regular and bounded in the unit circle and small at a set of points near the circumference of the circle, Proc. Cambridge Philos. Soc. 35 (1939), 382 – 388. - Zbl 0021.24001

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.