Kud'yavin, V. S.
A characteristic property of a class of space homeomorphisms. (Russian) [Zbl 0725.30010]

[For the entire collection see Zbl 0685.00003.]
This is a short note on particular properties of some classes of homeomorphisms \(f: D \to D^* \) between bounded open sets in \(\mathbb{R}^n \). A pair \((E,G)\) consisting of an open set \(G \) in \(\mathbb{R}^n \) and a subset \(E \subset G \) compact in \(\mathbb{R}^n \) is called a condensator. For any \(\alpha \) with \(1 \leq \alpha \leq n \), such a condensator has a real- valued \(\alpha \)-capacity which is defined by an infimum of integrals over \(G \), taken over a certain class of functions \(\phi : G \to [0,1] \).

Theorem 1 of this paper says that a homeomorphism \(f: D \to D^* \) is almost everywhere differentiable in \(D \) if \(f \) satisfies certain inequalities with respect to the \(\alpha \)-capacities of condensators \((E,G)\) in \(D \), i.e., \(E \subset G \subset D \). The second part of the paper deals with characteristic values attached to homeomorphisms \(f: D \to D^* \), which are defined by particular integrals (over \(D \)) of functions constructed from (pointwise) generalized derivatives of \(f \). Theorem 2 gives then a characterization of those homeomorphisms that have prescribed bounded characteristic integrals in the above sense. The equivalent conditions are expressed in terms of (then existing) quasi-additive set-valued functions on \(D \), which satisfy boundedness conditions for condensators in \(D \).

Reviewer: W. Kleinert (Berlin)

MSC:
- 30C65 Quasiconformal mappings in \(\mathbb{R}^n \), other generalizations
- 26D10 Inequalities involving derivatives and differential and integral operators
- 26E25 Set-valued functions
- 54C30 Real-valued functions in general topology

Keywords:
homeomorphisms of real domains; capacity; differentiability; nondegenerate functions; generalized derivatives; set-valued functions