Critical graphs, matchings and tours or a hierarchy of relaxations for the travelling salesman problem. (English) Zbl 0535.05038 Combinatorica 3, 35-52 (1983).

From the authors’ abstract: "A (perfect) 2-matching in a graph $G = (V, E)$ is an assignment of an integer 0, 1 or 2 to each edge of the graph in such a way that the sum over the edges incident with each node is at most (exactly) two. The incidence vector of a Hamiltonian cycle, if one exists in G, is an example of a perfect 2-matching. For k satisfying $1 \leq k \leq |V|$, we let P_k denote the problem of finding a perfect 2-matching of G such that any cycle in the solution contains more than k edges. We call such a matching a perfect P_k-matching. Then for $k < l$, the problem P_k is a relaxation of P_l. Moreover if $|V|$ is odd, then $P_{|V|-2}$ is simply the problem of determining whether or not G is Hamiltonian. A graph is P_k-critical if it has no perfect P_k-matching but whenever any node is deleted the resulting graph does have one. If $k = |V|$, then a graph $G = (V, E)$ is P_k-critical if and only if it is hypomatchable (the graph has an odd number of nodes and whatever node is deleted the resulting graph has a perfect matching).

We prove the following results: 1. If a graph is P_k-critical, then it is also P_l-critical for all larger l. In particular, for all k, P_k-critical graphs are hypomatchable. 2. A graph $G = (V, E)$ has a perfect P_k-matching if and only if for any $X \subseteq V$ the number of P_k-critical components in $G[V-X]$ is not greater than $|X|$. 3. The problem P_k can be solved in polynomial time provided we can recognize P_k-critical graphs in polynomial time. In addition, we describe a procedure for recognizing P_k-critical graphs which is polynomial in the size of the graph and exponential in k.

Reviewer: J. Schwarze

MSC:
05C38 Paths and cycles
05C45 Eulerian and Hamiltonian graphs
94C15 Applications of graph theory to circuits and networks

Keywords:
perfect matching; 2-matching; Hamiltonian cycle; hypomatchable

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.