Main purpose of the present article is to show the existence of a coarse moduli space of irreducible connections on vector bundles of rank 2 on \(\mathbb{P}^1(\mathbb{C}) \) having regular singularities in three fixed points, say, \(\{0, 1, \infty\} \). Put \(U_0 = \mathbb{P}^1(\mathbb{C}) - \{\infty\} = \mathbb{C} \) with coordinate \(z \) and \(U_\infty = \mathbb{P}^1(\mathbb{C}) - \{0\} = \mathbb{C} \) with coordinate \(x \) such that \(xz = 1 \). Let \(S = \{s_1, s_2, \ldots, s_n\} \) be a finite collection of points of \(X = \mathbb{P}^1(\mathbb{C}) \), \(n \geq 2 \), \(s_i \neq s_j \). If \(i \neq j \), \(z(s_i) = a_i \). Let \(\mathcal{E} \) be a holomorphic vector bundle of rank 2 on \(X = \mathbb{P}^1(\mathbb{C}) \). A connection \(\nabla \) on \(\mathcal{E} \) having regular singularities on \(S \) is, by definition: (1) \(\nabla \) is a holomorphic connection of \(\mathcal{E}_{|X-S} \) (i.e. a \(\mathbb{C} \)-linear map \(\nabla : \mathcal{E}_{|X-S} \to \Omega^1(\mathcal{E}_{|X-S}) \) satisfying \(\nabla(fe) = df \otimes e + f\nabla(e) \) for local sections \(f \) and \(e \) of \(\mathcal{O}_X \) and \(\mathcal{E} \), respectively); (2) for any \(s \in S \), there exist an open neighbourhood \(U \) of \(s \) in \(X \), a base \(\omega \) of \(\Omega^1_U \) and a base \((e) \) of \(\mathcal{E}_U \) meromorphic in \(s \) (i.e. there exists an element \(T \in \text{GL}(2, \mathbb{C}) \Omega(X(S)) \) and a base \((g) \) of \(\mathcal{E}_U \) with \((e) = (g)T \) on \(T - \{s\} \) such that if we write \(\nabla(e) = \omega \otimes e \), then each component of the matrix \(M \) has a pole of order at most one at \(s \) and holomorphic on \(U - \{s\} \).

Put \(\nabla = \nabla(v), \frac{d}{dx} >, \) \(\nabla = \nabla(v), \frac{d}{dz} > \), where \(v \) is a local section of \(\mathcal{E} \). We have \(\nabla = -x^2 \nabla \) on \(U_0 \cap U_\infty \). The author first shows the following theorem, which enable him to reduce the moduli problem of connections to that of pairs of matrices:

Theorem 1.2.1. Let \(\mathcal{E} \) and \(S \) be the same as above and \(\nabla \) a connection on \(\mathcal{E} \) having regular singularities on \(S \). Then there exists a basis of \(\mathcal{E} \) meromorphic on \(S \) such that with respect to this basis, if \(S \subseteq U_0 \), then

\[
\nabla = (\frac{d}{dz}) + (A_1/(z-a_1)) + \cdots + (A_n/(z-a_n)),
\]

where \(A_1, \ldots, A_n \) are \(2 \times 2 \) complex matrices and \(A_1 + \cdots + A_n = 0 \).

The author shows that the same theorem holds for algebraic vector bundles \(\mathcal{E} \) on \(\mathbb{P}^1(K) \) and an algebraic connection with regular singularities on \(S \), if \(K \) is an algebraically closed field of characteristic 0. He also shows that if \(K \) is not algebraically closed with \(\text{char}(K) = 0 \), then the theorem does not necessarily hold. (He gives the necessary and sufficient conditions that the theorem holds in this case: Theorem 1.3.6.)

Let \(P_m \) be the set consisting of pairs \((A_1, A_2)\) of \(K \)-valued \(2 \times 2 \) matrices. The author defines two equivalence relations \(\sim \) on \(P_m \) by:

\[
(B_1, B_2) \sim (A_1, A_2) \text{ if } (B_1, B_2) = (T^{-1}A_1T, T^{-1}A_2T) \text{ for some } T \in \text{GL}(2, K);
\]

\[
(B_1, B_2) \approx (A_1, A_2) \text{ if } (B_1(z) + (B_2)/(z-1)) = T^{-1}((A_1)/(z) + (A_2)/(z-1))) + T^{-1}dT/dz \text{ for some } T \in \text{GL}(2, K[z, 1/z, 1/(z-1)]).
\]

Classifying elements of \(P_m \) relative to the first equivalence relation \(\sim \) agrees with classifying Fuchsian systems and classifying elements of \(P_m \) relative to the second equivalence relation \(\approx \) agrees with classifying connections (Theorem 1.2.1 and Lemma 3.1.5).

In § 2, the author classifies certain subsets of Fuchsian systems. Let \(V \) be the category of analytic spaces (or algebraic varieties). For any \(S \in V \), a family of pairs of matrices over \(S \) is a triple \((\mathcal{E}, A_1, A_2)\) consisting of a vector bundle \(\mathcal{E} \) of rank 2 on \(S \) and endomorphisms \(A_1, A_2 \) of \(\mathcal{E} \). Two families \((\mathcal{E}, A_1, A_2)\) and \((\mathcal{E}', A_1', A_2')\) on \(S \) are called equivalent, if there exist an open covering \(\{U_j\}_{j \in J} \) of \(S \) and isomorphisms \(\phi_j : \mathcal{E}|_{U_j} \to \mathcal{E}'|_{U_j} \) such that \(A_k|_{U_j} = \phi_j(A_k|_{U_j})\phi_j^{-1}, k = 1, 2, \) for all \(j \). We denote the equivalence class of \((\mathcal{E}, A_1, A_2)\) by \(c(\mathcal{E}, A_1, A_2) \). By \(F_m \) we mean a contravariant functor from \(V \) to \((\text{Set})\) determined by \(F_m(S) = \{c(\mathcal{E}, A_1, A_2)\}\).

Similarly one defines a subfunctor \(F \) of \(F_m \) by \(F(S) = \{c(\mathcal{E}, A_1, A_2)|((A_1(s), A_2(s))\text{ irreducible}, that is, } A_1(s) \text{ and } A_2(s) \text{have no common eigenvectors in } \mathcal{E}(s) \text{ for any } s \in S\}. \) The author shows that \(F_m \) has no coarse moduli space (proposition 2.2) but \(F \) has a coarse moduli space (Theorem 2.3.2). Here, a coarse moduli space for a functor \(G \) from \(V \) to \((\text{Set})\) is a pair \((N, \Phi)\) with \(N \subseteq V \), \(\Phi : G \to h_N = \text{Hom}(N, \cdot) \) such that \(\Phi(p) : G(p) \to h_N(p) \) is bijective where \(p \) is a point and for each \(L \subseteq V \) and each morphism \(\Psi : N \to h_L \), there is a unique morphism \(f : N \to L \) such that the diagram \(\Psi \Rightarrow \Phi^{-1} h_N, h_L \Rightarrow \Phi \) is commutative.

In § 3 the author classifies the irreducible connections on holomorphic vector bundles of rank 2 on \(\mathbb{P}^1(\mathbb{C}) \)
having regular singularities in three fixed points 0, 1, \infty. A family of irreducible connections on an analytic space \(S \) is, by definition, a pair \((\mathcal{E}, \nabla)\) where \(\mathcal{E}\) is a vector bundle of rank 2 on \(S \times \mathbb{P}^1(\mathbb{C})\) and \(\nabla\) is an irreducible relative connection on \(\mathcal{E}\) having regular singularities in \(\{0, 1, \infty\}\). ("Irreducible" means that the family of pairs \((A_1, A_2)\) on \(S\) associated with \(\nabla\) by Theorem 1.2.1 is irreducible.) Two pairs \((\mathcal{E}, \nabla)\) and \((\mathcal{E}', \nabla')\) are called equivalent if for each \(x \in X = S \times \mathbb{P}^1(\mathbb{C})\) there exist a neighbourhood \(U\) of \(x\) in \(X\) and an isomorphism \(\phi : E|_{U} \to E'|_{U}\) meromorphic along \(Y = S \times \{0, 1, \infty\}\) such that on \(U - Y\) we have \(z \nabla = z \nabla'\). Then the author shows that the functor \(G\) from \(V\) to \((\text{Set})\) defined by \(G(S) = \) the set of equivalence classes of \((\mathcal{E}, \nabla)\) has a coarse moduli space.

Reviewer: Kenji Ueno (Kyoto)

MSC:

- **14D20** Algebraic moduli problems, moduli of vector bundles
- **53C05** Connections (general theory)
- **32G13** Complex-analytic moduli problems
- **14D05** Structure of families (Picard-Lefschetz, monodromy, etc.)
- **14F06** Sheaves in algebraic geometry
- **14-02** Research exposition (monographs, survey articles) pertaining to algebraic geometry
- **53B15** Other connections

Keywords:

Fuchsian system; coarse moduli space of irreducible connections on vector bundles of rank 2; regular singularities