Rao, Geetha S.; Mariadoss, S. A.
Applications of fixed point theorems to best approximations. (English) Zbl 0553.41034
Serdica 9, 244-248 (1983).

Let X be a real normed space and K a subset of X. An element h in K is called a best K-approximant for an element x in X if $\|x - h\| \leq \|x - g\|$ for all g in K. Let D be the set of all best K-approximants to x. If T is an operator on X with a fixed point x, then by imposing some conditions on T or the set K, it is possible to find another fixed point of T in the set D. B. Brosowski [Mathematica, Cluj 11(34), 195-220 (1969; Zbl 0207.455)] obtained a result of this kind: Let K be a T-invariant subset of X and x a fixed point of T. If the set of all best K-approximants to x is nonempty, convex and compact, then it contains a fixed point other than x. In this paper, the linearity condition on T and the convexity on K are weakened to give rise to some generalizations. The weaker conditions used are too technical to state. The paper contains several misprints and inaccuracies.

Reviewer: M. Nashed

MSC:
41A50 Best approximation, Chebyshev systems
47H10 Fixed-point theorems

Keywords:
condensing operators; best K-approximant